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Abstract 

During preliminary delineations of an Ordinary High Water Mark 
(OHWM) boundary, LiDAR data or products may be used to view the 
OHWM signature across a project area and to estimate the height and 
location of two primary OHWM indicators: changes in vegetation and 
breaks in slope. At this time, most LiDAR data or products cannot detect 
changes in sediment texture. The point spacing, horizontal resolution, and 
vertical accuracy of the data or products determine if landscape features, 
such as the OHWM break in slope, can be measured with sufficient accu-
racy. All information gathered from LiDAR data or products should be 
verified in the field. During the preliminary, data-gathering stage of wet-
land delineations, LiDAR data and products may be used to view vegeta-
tive, topographic, and hydrologic patterns across a project area and to 
focus the investigation on transitional areas. They cannot provide evidence 
of hydrophytic vegetation or hydric soils. Although LiDAR intensity data 
may provide information on inundation extent, they contain no infor-
mation regarding inundation frequency or duration and should not be 
used as a primary hydrology indicator. Intensity data collected during the 
growing season could be used as a secondary indicator of wetland hydrolo-
gy. LiDAR data or products are not an adequate substitute for a field inves-
tigation. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

Waters of the United States (WoUS), including wetlands, provide a num-
ber of benefits, including, but not limited to, channeling and storing storm 
waters, recharging aquifers, improving water quality, irrigating crops, 
providing habitat for wildlife, and providing areas for recreation (Mitsch 
and Gosselink 2000; Lichvar and Wakeley 2004). Under Section 404 of 
the Clean Water Act (33 U.S.C. 1344) (US Congress 1977), the US Army 
Corps of Engineers (USACE) is responsible for regulating the dredging and 
filling of WoUS and wetlands. To avoid or minimize impacts to channels, 
the lateral extent of federal jurisdiction—the Ordinary High Water Mark 
(OHWM) boundary—is delineated in the Arid West, for example, using 
procedures described in A Field Guide to the Identification of the Ordi-
nary High Water Mark (OHWM) in the Arid West Region of the Western 
United States (Lichvar and McColley 2008). Likewise, the boundaries of 
three-factor wetlands are delineated using procedures in the Corps of 
Engineers Wetlands Delineation Manual (Environmental Laboratory 
1987) and the appropriate regional supplement. Our review, requested by 
the Wetland Regulatory Assistance Program, investigates the feasibility of 
using LiDAR data for delineation purposes in WoUS and wetlands. 

Section Two begins with a general description of Light Detection and 
Ranging (LiDAR) systems and recognizes the rapidly advancing state of 
this technology. To develop an understanding of what LiDAR data repre-
sent and which data may be useful for delineation purposes, it discusses 
data collection and processing methods and common geospatial products. 
Additionally, it reviews current federal guidelines for LiDAR data collec-
tion and processing, with the acknowledgement that this field is still evolv-
ing and that it is currently guided by minimum specification documents 
but few standards. To determine the feasibility of using LiDAR in regulato-
ry applications, the following sections review ecological research that uses 
LiDAR data and products. Section 3 examines the use of LiDAR data or 
products in preliminary delineations of the OHWM boundary with regard 
to mapping vegetation patterns, topographic patterns, and changes in 
sediment texture. Section 4 describes possible uses for LiDAR data or 
products in preliminary wetland delineations, particularly for mapping 
topographic, hydrologic, and vegetation patterns. Throughout the report, 
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vascular plant scientific names used in vegetation discussions follow 
Kartesz (2009).  

Since it is not typically cost effective to collect original LiDAR data for 
regulatory purposes, Appendices A and B describe some sources of LiDAR 
data and products and some freely available LiDAR software and geo-
graphic information systems (GIS) packages for viewing and analysis. The 
figures in this manuscript, created with some of this software, illustrate 
the different types of LiDAR data and products discussed in this review.  

Because LiDAR technology is advancing rapidly, there are temporal limita-
tions to this project. Therefore, we provide specific details on the spatial 
resolution of the data and the classification accuracy of the LiDAR-derived 
products used in each study. These details may help investigators gauge 
the utility of a LiDAR dataset or product, given its spatial resolution.  
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2 Overview of LiDAR Systems, 
Data, and Products 

The main objective of this review is to discuss the use of LiDAR as it re-
lates to the delineation of WoUS and wetlands, so a basic understanding of 
what the data represent and how to evaluate data and products is critical. 
This section provides a brief summary of LiDAR systems, types of data and 
products, and current accuracy standards so that investigators can assess 
whatever is available. It begins with a general description of LiDAR sys-
tems and the physical properties of electromagnetic radiation as they 
relate to the amount of spatial detail in a dataset. (For an in-depth review 
of LiDAR systems, see Deems et al. [2013].) It also describes differences 
among point clouds, LiDAR models, LiDAR-derived products, and sec-
ondary products. Finally, this section discusses metrics for evaluating the 
spatial resolution of LiDAR data and products and for assessing the accu-
racy with which LiDAR-derived products classify environmental group-
ings, such as vegetation or land cover types. Throughout, this section pro-
vides current federal standards for LiDAR data accuracy and accuracies 
reported from the literature.  

2.1 LiDAR systems and data collection methods 

LiDAR point clouds represent the surface of the Earth and objects across 
the landscape as a collection of points with associated x, y, and z location 
data. Each point is also associated with an intensity value. Before using a 
point cloud for delineation purposes, it is important to have a basic under-
standing of how these data are collected and processed because these 
factors can affect how useful the data may be in regulatory applications. A 
wide variety of instruments and methodologies are used to collect LiDAR 
data, and systems are constantly being improved and updated as technolo-
gy rapidly evolves. A typical aerial or mobile LiDAR system consists of five 
primary components: a mounting platform, a laser and scanning mirror, 
an inertial measurement unit (IMU), a global positioning system (GPS) 
antenna and receiver, and a data collection and processing computer. 
There are three general categories of platforms: Aerial Laser Scanning 
(ALS), Mobile Laser Scanning (MLS), and Terrestrial Laser Scanning 
(TLS). ALS most commonly uses fixed-wing aircraft or helicopters to col-
lect data although blimps and satellite-based systems are also used. MLS 
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uses watercraft and land vehicles, such as automobiles, all-terrain vehicles, 
and snowmobiles. TLS systems are typically mounted on a survey tripod 
and result in static surveys.  

For ALS and MLS systems, the laser is aimed at a scanning mirror, which 
rotates or oscillates on its center axis, changing the scan angle of the puls-
es. GPS systems calculate the exact locations of the platform and the laser 
pulses striking an object or the ground while the scanner measures the 
angle of the laser pulse. The distance to the target is calculated using a 
simple formula: 

(rate × time)/2 = distance. 

The IMU measures platform movements so that roll, pitch, or yaw will not 
affect the true location of the data. The processing computer records the 
time and the intensity of the return signals and integrates this information 
with exact position information calculated from the IMU and GPS data. 
The distance information for every return pulse is converted to geographic 
data with x, y, z coordinates that represent latitude, longitude, and eleva-
tion (NOAA 2008). 

Different LiDAR systems emit laser pulses from different distinct regions 
of the electromagnetic spectrum. Electromagnetic radiation—charged 
particles without mass—travels in wave-like patterns. Different types of 
electromagnetic radiation, such as visible light, microwaves, or radio 
waves, are characterized by different wavelengths (the length of one com-
plete wave) and frequencies (the number of complete waves that cycle past 
a fixed point in a given time period). Wavelength and frequency are in-
versely related; therefore, high-frequency gamma rays (1021 Hz) have short 
wavelengths (10–4 nm). Conversely, low-frequency radio waves (107 Hz) 
have much longer wavelengths (1010 nm). LiDAR systems that emit pulses 
from the infrared (1064 or 1550 nm) or visible (532 nm) portions of the 
electromagnetic spectrum are most common.  

When a laser pulse strikes an object, it may be reflected, absorbed, or 
scattered, depending on its wavelength and the composition of the object. 
When laser pulses are reflected in a single direction, the reflection is de-
scribed as specular. When reflection is specular, the processing computer 
in a LiDAR system records a single, high-intensity return signal. Intensity 
is the ratio of the strength of reflected light to emitted light (Chust et al. 
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2008). In contrast, absorption occurs when the energy in the pulse is 
transferred to electrons of the object’s surface. When pulses are absorbed, 
the processing computer records a very low intensity return signal or none 
at all. Reflection is described as diffuse or scattered when pulses are scat-
tered in many directions after striking a surface. Back scattering sends 
low-intensity return signals back toward the LiDAR system that generated 
them.  

The type of processor used to record return signals greatly affects the 
amount of spatial detail in LiDAR data because some processors cannot 
detect backscattered returns. Older, discrete return LiDAR systems gener-
ate data by emitting a pulse from the platform and recording several dis-
crete returns. For example, a pulse travels toward the target surface and is 
reflected from the first surface it hits, such as the branch in Figure 1. A 
portion of the energy from the pulse returns to the platform and is record-
ed as a first return, based on the time it took to return and its intensity. 
The remainder of the pulse continues through the canopy and hits another 
branch, and a second return is generated. This process continues until the 
final surface, the Earth, is reached or the pulse lacks sufficient energy to 
register a return. However, in complex environments, discrete return 
systems may not detect all surfaces present. Other LiDAR systems use full 
waveform LiDAR, also shown in Figure 1. These processors record numer-
ous elevation points for each laser pulse (Mallet et al. 2009). Full wave-
form LiDAR is particularly well suited for vegetation mapping because it 
provides a precise reconstruction of the vegetation structure through digit-
ization of the entire backscattered illumination. Because waveform sys-
tems digitize the entire returned energy pulse, data collected using these 
systems provide more spatial detail than data collected using a discrete 
return system.  

The pulse spacing and the size of the laser’s footprint on the surface of the 
Earth also affects the amount of spatial detail in LiDAR data. Landscape 
features, such as a point bar or a vernal pool, cannot be discerned or 
measured if they are smaller than the distance between pulses on the 
ground. Both ALS and TLS use multiple overlapping scans to increase the 
pulse density, to decrease the distance between pulses on the ground, and 
to increase the spatial resolution of the data. The amount of spatial detail 
in LiDAR data is also affected by laser footprint size. The footprint size 
represents the area of the Earth’s surface that is sampled with each pulse. 
Some ALS systems, such as those on satellite platforms, emit widely 
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spaced laser pulses that produce a very large circular footprint, up to 10–
25 m in diameter. Other ALS systems emit more closely spaced, narrower 
pulses with much smaller footprints, approximately 0.5–1.0 m in diame-
ter. TLS can emit pulses with a 4.0 mm laser footprint and a 1.2 mm pulse 
spacing over distances up to 50 m (Hodge et al. 2009b). 

Figure 1.  Comparison of discrete return and full waveform airborne laser measurements for 
different target situations. The target is illuminated with a short laser pulse, and when the 

pulse interacts diffusely with a target, a fraction of the signal is reflected back to the 
instrument. Multiple surfaces are well characterized using a full waveform system whereas a 

discrete return system often fails to detect all surfaces in complex or cluttered target 
environments. (Adapted from Riegl Lasar Measurement Systems [2012].) 

 

Multiple overlapping scans of the target area reduce line-of-sight limita-
tions and better represent the viewing scene. LiDAR data may be displayed 
from many points of view, not just from that of the collecting instrument. 
Areas not visible to the collection instrument, such as the area directly 
underneath a terrestrial scanner, may leave “holes” in the dataset. Other 
spots within the collection area where the LiDAR pulse was not able to 
penetrate or return are known as LiDAR “shadows.” The location of these 
shadows varies with the platform type and the location of the collection 
instrument. Data collected by aerial platforms may have shadows under-
neath the roof of a building; data collected using TLS may depict shadows 
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extending behind a building. The algorithms used to create models or 
products out of raw point clouds use different methods to fill or represent 
areas with low point densities.  

Holes in LiDAR data may also result from the pulse wavelength used in a 
LiDAR survey. Terrestrial ecosystems are commonly surveyed using 1064 
or 1550 nm laser pulses from the near-infrared portion of the electromag-
netic spectrum. These longer-wavelength, lower-frequency pulses reflect 
off terrestrial surfaces, such as buildings or vegetation, producing high-
intensity return signals. Because near-infrared laser pulses tend to be 
absorbed or scattered by water, water bodies and inundated wetlands 
often produce fewer, weaker returns or none at all. These holes and areas 
of low-intensity returns are used to map water bodies, wetlands, and in-
undated areas (Brennan and Webster 2006; Chust et al. 2008; Lang and 
McCarty 2009). However, water bodies may sometimes reflect near-
infrared LiDAR pulses. When water is turbid or when the surface is rough 
or covered with oil or organic debris, reflection may be specular. In these 
instances, the return signal intensity is similar to that of terrestrial sys-
tems (Milan et al. 2010), so differences among terrestrial systems, water 
bodies, and wetlands are less apparent. Section 4.3 discusses in greater 
detail the use of intensity data to map water bodies and wetlands.  

Green or bathymetric LiDAR systems provide greater spatial detail in 
coastal, estuarine, and some riverine ecosystems than do near-infrared or 
terrestrial LiDAR. These green or bathymetric systems emit shorter-
wavelength, higher-frequency laser pulses from the blue-green section of 
the electromagnetic spectrum. Because these 532 nm pulses are transmit-
ted through standing water to depths of up to 25 m, they generate more 
spatial detail when the standing water is fairly shallow than does infrared 
LiDAR. Green LiDAR is used to survey complex benthic habitats, such as 
coral reefs (USGS 2011). In these systems, pulses reflect off underwater 
structures, submerged debris, and marine animals and plants, and the 
underlying substrate produces strong returns (Kinzel et al. 2007; Klemas 
2011). Some bathymetric LiDAR systems use green LiDAR pulses in con-
junction with near-infrared pulses to produce returns from both the water 
surface and underwater structures. A combination of infrared and green 
LiDAR is also used to map snow depth (Deems et al. 2013), a significant 
water source for ephemeral and intermittent streams in many USACE 
regions. Older, high-energy green LiDAR systems caused eye damage 
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(Milan et al. 2010), but newer systems require less energy per pulse and 
are considered eye safe at specified distances (USGS 2011). 

2.2 Processing LiDAR data: point clouds, models, 
and LiDAR-derived products 

The x, y, and z location data from all return signals form a cloud of points 
that represents the surface of the Earth and the objects on it at a particular 
location. Each point is also associated with the intensity value for that 
return. Raw LiDAR data are processed to remove points thought to repre-
sent outliers or erroneous data, created by birds, planes, marine mam-
mals, certain reflective surfaces, or false ground points produced by low 
vegetative cover. Holes in the data, created by scanner locations or water 
bodies, may also be filled in at this time. Processed LiDAR data are repre-
sented as three-dimensional point clouds. Subsections of the original point 
cloud created by filtering are used to create Digital Terrain Models (DTMs) 
or Digital Surface Models (DSMs) after further processing. Algorithms are 
used to filter or classify points into subsections based on return type (e.g., 
the first or the last returns). When three-dimensional LiDAR models are 
processed even further and are represented in two dimensions, they are 
described as LIDAR-derived products. Products are available in both vec-
tor (contour lines) and raster format (Digital Elevation Models [DEMs]). 
Secondary products, such as Topographic Wetness Indices (TWI), use 
LiDAR-derived products, such as a DEM, to calculate values for other 
variables that were not directly measured by the LiDAR system. Point 
clouds, models, LiDAR-derived products, and secondary products may be 
useful to investigators during OHWM or wetland delineations. 

Point clouds contain more spatial detail than models and products, so they 
may be the most useful for delineation purposes. Processed point clouds 
are downloaded in ASCII or LAS (Log ASCII Standard) formats or as a 
compressed LAZ file. These files are most easily imported, displayed, and 
measured using LiDAR software, such as Quick Terrain Reader 7.1.6 (Ap-
plied Imagery 2012). This program can handle models composed of up to 
200 million points and point-cloud data composed of up to 100 million 
points. Differences in elevation or return intensity are typically displayed 
using different colors and can be measured and evaluated. Although more 
difficult to use, some GIS have specialized toolbars that enable them to 
display and evaluate LiDAR data in three dimensions. The LAS dataset 
toolbar, a software extension for ArcMap 10.1, is one example. One draw-
back to working with point clouds is that they require considerable storage 
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space because they are three dimensional and consist of millions of data 
points. For example, the processed point cloud in Figure 2, collected by the 
National Aeronautics and Space Administration’s Airborne Topographic 
Mapper and a waveform digitizer, consists of 442,977 points and requires 
8,364 kB of space. Datasets collected using TLS may be even larger. The 
unprocessed point cloud in Figure 3b, collected using a terrestrial platform 
and a waveform digitizer, consists of 5,780,445 points and requires 
144,526 kB of space.  

Figure 2.  Point cloud from Mission Creek, CA,* collected using an aerial platform and a 
waveform digitizer, the National Aeronautics and Space Administration’s Airborne 

Topographic Mapper. In the legend, elevation is measured in meters. The point cloud is 
displayed using Quick Terrain Reader 7.1.6 (Applied Imagery 2012). 

 

LiDAR models, such as DTMs and DSMs, are three-dimensional subsets of 
the original point cloud, which will also be useful for delineating OHWM 
boundaries and wetlands. Model creation involves classifying the points in 
a data cloud into groups, such as first returns, last returns, etc. Specialized 
algorithms select one group of points to model, such as those representing 
the last return. Models consisting of the lowest points in a data cloud, 
known as DTMs, are commonly used to map topography as these lowest 
points are thought to represent only the Earth’s surface. Unless specified 
as a bathymetric model, DTMs map only the top surface of water bodies, 
excluding underwater terrain. The DTM in Figure 3a displays the height of 
only the Earth’s surface, contains about one quarter of the points, and 
requires one quarter of the storage space used by the original point cloud 
(Figure 3b), which displays the heights of vegetation and other objects in 
addition to the Earth’s surface.  
                                                                 
* D. Finnegan, unpublished LiDAR data. USACE ERDC-CRREL, 2006. 
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Figure 3.  Comparison of (a) a 37,706 kB DTM (1,509,218 points) and (b) a 144,526-kB point 
cloud (5,780,445 points). Both images were produced from the same data collected from a 

terrestrial platform with a waveform digitizer in Ascutney, VT.* The data are colorized by 
elevation. The legends are displayed in meters. The data are displayed using Quick Terrain 

Reader 7.1.6 (Applied Imagery 2012).  

 

 

DSMs represent different subsets of the original point cloud and are creat-
ed in one of two ways. The first method uses a specialized algorithm to 
subtract the last return from the rest of the LiDAR point cloud, leaving a 
profile of the vegetation. An alternative method for creating a DSM is to 
remove from a LiDAR point cloud all points except for the first returns so 
that the data represent the heights of the top of the vegetation layer. 
Reutebuch et al. (2003) provide examples of DSMs and DTMs created 
from a LiDAR survey of a conifer forest. LiDAR models are available in the 
same type of files as point clouds and are viewed using the same software. 
                                                                 
1 D. Finnegan and A. LeWinter, unpublished LiDAR data. USACE ERDC-CRREL, 2012 

b. 
 

a.. 
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One potential drawback to working with models is that they contain fewer 
data than point clouds, so much spatial information is lost. Loss of infor-
mation may or may not be problematic, depending on the investigator’s 
objective. For example, if the sole objective is to identify geomorphic 
breaks in slope associated with the OHWM, points representing vegetation 
are of little importance.  

LiDAR-derived products may also be useful for regulatory purposes. These 
two-dimensional products are created from three-dimensional DTMs and 
DSMs after still further processing. LiDAR-derived products are displayed 
in vector or raster geographic representations, sometimes after being 
combined with other types of data. Vector representations, such as high-
resolution contour lines and Triangulated Irregular Networks (TINs), may 
be downloaded in many formats, including geodatabases or shapefiles. 
Contour lines, derived from DTMs, consist of a series of isobars that repre-
sent fairly small changes in elevation. These two-dimensional representa-
tions of the last returns of a LiDAR point cloud provide less spatial infor-
mation than a DTM but require far less storage space. For example, the 
1.0 m LiDAR-derived contour lines (represented as black isobars) in Fig-
ure 6a require 856 kB of space (Nayegandhi et al. 2010). Because contour 
lines are created from many sources, users should check metadata to en-
sure that their file was created from LiDAR data.  

TINs are a second type of vector representation that can be derived from 
DTMs or DSMs and may be useful for delineation purposes. TINs use 
points, lines, and triangles to model objects and the Earth’s surface. TINs 
are created by drawing lines to connect three adjacent points in a model, 
transforming it into a network of adjacent triangles that do not overlap. 
Variables, such as height or return intensity, are assumed to vary linearly 
within the triangles. The density and size of the triangles can be adjusted 
to better represent heterogeneous areas in the landscape. TINs are par-
ticularly useful for representing surfaces or for displaying streams, ridges, 
and peaks in the landscape because they add perspective to the visualiza-
tion capabilities of the GIS and contain precise coordinates. Unlike point 
clouds, TINs are not three-dimensional data although they take on a three-
dimensional appearance when select triangles are shaded or an aerial 
photograph is overlain. Often, data from another source are added to 
LiDAR-derived TINs. These data may be linear features, such as contour 
lines from a topographic map; wetland or stream boundaries from geo-
graphically referenced aerial photographs; or data from a field survey, 
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such as thalweg measurements. LiDAR-derived TINs enhanced with hy-
dro-breaklines created from field surveys of stream cross sections are 
often used to model stream flow or erosion in channels (Perroy et al. 
2010). This type of LiDAR-derived product could be extremely useful for 
OHWM delineations. Whenever a TIN is used for delineation purposes, it 
is important to determine all sources of data used to produce it. Although 
some TINs are created from LiDAR data, others are constructed from 
geographically referenced aerial photographs, the contour lines of topo-
graphic maps, or data from field surveys. The literature suggests that TINs 
created from LiDAR data are better able to model discharge and the eleva-
tion of the water surface and to delineate flooded areas than are TINs 
made from other sources. LiDAR-derived TINs are also more sensitive to 
changes in Manning’s roughness coefficient (Casas et al. 2006). 

Other LiDAR-derived products, represented in raster format, may also be 
useful for delineation purposes. Raster images display continuous varia-
bles across a landscape, such as changes in elevation or intensity. The 
format is similar to a digital photograph in that it is composed of a regular 
grid of small cells or pixels, which are usually square. Each pixel in the 
image represents an equivalent portion of the study area, such as 1.0 m2. 
Elevation or intensity values are assigned to each pixel based on the re-
turns from its area. Algorithms are used to predict values for areas where 
explicit LiDAR returns do not exist (e.g., areas of shadow or low intensity). 
Raster products are available in many file types, including but not limited 
to TIFF, ASC, IMG, and KML files or compressed as a KMZ file. These files 
are quickly imported and viewed using GIS such as Google Earth Pro (Ter-
ra Metrics 2010) or Global Mapper 13.0 (Blue Marble Geographics 2012). 
Both programs can be operated by users without extensive background in 
GIS. Because raster images are two-dimensional representations of three-
dimensional LiDAR models, they provide less spatial information than the 
model itself, but they often require less storage space. For example, the 
1.0 m bare earth DEM represented as a colored gradient in Figure 6a re-
quires 15,690 kB of space (Nayegandhi et al. 2010).  

Three types of rasters derived from LiDAR models may be useful for delin-
eation purposes: DEMs, canopy height models (CHMs), and secondary 
products. Bare-earth DEMs, which display the height of the Earth’s sur-
face, are two-dimensional representations of DTMs. Color gradients are 
used to illustrate differences in elevation or return intensity among pixels. 
See the previously mentioned example in Figure 6a (Nayegandhi et al. 
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2010). Investigators should examine metadata to determine if a DEM was 
derived from LiDAR data as DEMs can be constructed from many sources, 
including GPS surveys, geographically referenced aerial photographs, and 
topographic maps (Figure 4a). The literature suggests that for mapping 
wetlands and for assessing and modeling hydrologic variables, such as 
watershed area, connectivity and continuity of drainage networks, water-
shed elevation, and slope, LiDAR-derived DEMs are better than DEMs 
derived from topographic maps or from aerial photography (Hopkinson et 
al. 2009). Likewise, DEMs created from LiDAR data are better able to 
model and predict the presence of wetlands and uplands (Hogg and Hol-
land 2008) and better able to model relationships between vegetation and 
elevation (Moeslund et al. 2011) than DEMs created from other sources. 

CHMs or canopy altitude models (CAMs) are a second type of LiDAR-
derived product distributed in raster format. These two-dimensional 
products use first returns from a LiDAR point cloud to classify vegetation 
into categories. Common categories include trees, tall shrubs, short 
shrubs, broad-leaf herbaceous vegetation, grasses, and aquatic vegetation 
(Hopkinson et al. 2004; Farid et al. 2006; Bork and Su 2007). For an 
example, see Nayegandhi et al. (2010) in Figure 6b. These LiDAR-derived 
products are often fused with other types of remote sensing data, such as 
multispectral or hyperspectral imagery, to improve classification accuracy. 
Multispectral imagery uses broad band frequencies in the visible light 
range (i.e., red, green, and blue bands) and in the near-infrared range to 
capture image data at high (less than 1.0 m) spatial resolution (aerial plat-
forms) or lower (several meters) spatial resolution (satellite platforms). 
LiDAR data are often collected in conjunction with multispectral images 
(Lichvar et al. 2006; Anderson et al. 2010). Fusing multispectral imagery 
with LiDAR data improves the overall classification accuracy of floodplain 
vegetation (Geerling et al. 2007) and wetlands (Chust et al. 2008; Jenkins 
and Frazier 2010) by as much as 40.0%. A second type of remotely sensed 
data—hyperspectral imagery—captures image data at narrow band fre-
quencies across the electromagnetic spectrum, including near-infrared, 
shortwave infrared, and visible light, at a high spatial resolution. Fusions 
of hyperspectral imagery and LiDAR data improved the overall classifica-
tion accuracy of wetland graminoids by 11.0% (Onojeghuo and Blackburn 
2011). 

Investigators may also find useful for delineation purposes secondary 
products or indices that are derived from LiDAR data and displayed in 
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raster format. Secondary products use LiDAR-derived products, such as 
the topographic data in a bare-earth DEM, to calculate values for variables 
that were not directly measured by the LiDAR sensor. Soil wetness indices, 
which predict the degree of moisture in the soil from watershed area and 
slope, are one example that investigators may find useful. Other examples 
of secondary products derived from LiDAR products include slope, curva-
ture, aspect (Shaeffer 2008), lagg width, lateral slope, and peatland topo-
graphic indices (Richardson et al. 2010). These indices are discussed in 
greater detail in Section 4.3. 

2.3 Metrics for evaluating LiDAR data 

Before using LiDAR data in delineations, investigators should examine the 
metadata to ensure that the data are adequate for regulatory purposes. 
High-resolution data are strongly recommended although the term “high-
resolution” becomes relative as LiDAR technologies evolve and the spatial 
resolution of the data increases. Regardless, spatial resolution is extremely 
important for regulatory purposes because it determines the features that 
can be discerned; the smallest length or height that can be accurately 
measured; and most importantly, the conclusions that can be drawn from 
a dataset. The amount of spatial detail in point clouds and LiDAR-derived 
products is described using the concepts of point spacing, horizontal reso-
lution, and vertical accuracy. 

The degree of spatial detail in an unprocessed LiDAR point cloud is quan-
tified using two metrics: point density and point spacing. Point density 
refers to the spacing of the return signals recorded per unit area (e.g., 6 
points/m2). Point spacing describes the number of return signals recorded 
in a given unit of length (e.g., 1 point/m). ALS can produce data clouds 
with point densities ranging from 4 to 12 points/m2 (Lang and McCarty 
2009; Frazier et al. 2012). TLS datasets contain more spatial detail and 
more points than data collected using ALS.  For example, Milan et al. 
(2010) used TLS to collect two point clouds with densities of 1300 and 
2528 points/m2.  

Likewise, the degree of spatial detail in processed point clouds, DTMs, and 
DSMs is quantified using post density (points/m2) and post spacing 
(points/m). The horizontal resolution of a LiDAR model, such as a DTM, is 
typically lower than that of the point cloud it was created from because 
data are removed during model creation. For example, a point cloud of 37 
million points collected in an upland conifer forest had an initial point 
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density of 4.2 points/m2. After points representing vegetation were filtered 
out, 4 million bare-earth points remained. The post density of the DTM 
was 0.58 points/m2, and the post spacing was 1.3 m (Reutebuch et al. 
2003). Because more data are collected using TLS, more points are re-
tained after processing. In a riparian substrate study, point clouds that 
initially contained 35 and 54 points/cm2 prior to filtering had post densi-
ties of 17 and 30 points/cm2, respectively, after processing (Hodge et al. 
2009a).  

The horizontal resolution of a LiDAR-derived DEM is most commonly 
stated as the length that a pixel side actually represents (e.g., 1.0 m). The 
horizontal resolution of a LiDAR-derived product is lower than that of the 
original point cloud or model because many points are averaged or inter-
polated to create the product, so that groups of points represent planar 
surfaces or pixels. For instance, the previously described data cloud from 
the conifer forest with the post spacing of 1.3 m was processed further to 
create a 1.52 m DEM (Reutebuch et al. 2003). In the riparian substrate 
study, point clouds with post densities of 17 and 30 points/cm2 were fur-
ther processed to create 1.0 mm DEMs. 

Because LiDAR data and products are representations of x, y, and z coor-
dinates, their horizontal resolution determines how well landscape fea-
tures are represented. If the distance between points is less than the length 
of the feature, then it can be discerned and measured. For instance, a 
terrain feature that is 2.0 m in length, such as a sloping channel bank or 
gravel bar, could be discerned and measured using a LiDAR point cloud 
with point density of 4.2 points/m2, a DTM with a post spacing of 1.3 
points/m, or a LiDAR-derived 1.52 m DEM because, in all three cases, the 
distance between points or the horizontal resolution is less than the length 
of the feature. However, none of these could measure an abrupt break in 
slope 0.3 m in length, regardless of its height. 

The high horizontal resolution of LiDAR data and products clearly pro-
vides an advantage over the topographic data that traditionally have been 
available for preliminary delineations, such as 10 m resolution DEMs 
available from the National Elevation Dataset (NED) (Gesch 2007). Be-
cause many features that affect watershed drainage are less than 10 m in 
length (NOAA 2008), lower-resolution data are less useful for OHWM 
determinations and wetland delineations because they cannot accurately 
represent these small features. To illustrate, compare two floodplain maps 
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of the Humboldt River Valley in northwestern Nevada. In Figure 4a, a 
10 m DEM from NED (http://nationalmap.gov/) is used to model the active 
channel and the surrounding floodplain. The 10 m DEM shows an ex-
tremely sinuous, 30 to 40 m wide channel with one small tributary. The 
widest portion of the channel, at the southwestern end, is 83 m across. The 
floodplain also appears to be quite wide, ranging from 185 m in the north-
east to 1016 m in the southwest. In Figure 4b, the same area is represented 
in two dimensions using a 1.0 m resolution LiDAR-derived DEM, collected 
by the National Center for Airborne Laser Mapping (NCALM) 
(http://ncalm.org). In this figure, the channel appears much thinner, about 20–
25 m wide in the northeast and 62.5 m wide at the southwestern end. In 
addition, these data suggest different channel morphologies; the main flow 
path appears much less sinuous in the 1.0 m LiDAR data than in the 10 m 
DEM. Also, a number of tributaries that cannot be discerned in the 10 m 
image are apparent in the LiDAR image. Certainly horizontal resolution is 
one explanation for these differences. However, differences could also be 
temporal as channel morphology can change over time. The LiDAR data 
were collected in 2010 while the NED data were digitized in 2001 from a 
1972 7.5-minute topographic map. Sections 3 and 4 discuss in more detail 
the importance of acknowledging the temporal resolution of LiDAR data. 

  

http://ncalm.org/
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Figure 4.  Comparison of two floodplain maps of the Humboldt River Valley in northwestern 
NV. 

a. 10.0 m resolution DEM was digitized in 2001 from a 7.5-minute topographic map 
published by the USGS in 1972. The DEM was obtained from the National Elevation Dataset 

(Gesch 2007) and is displayed using ArcMap 10.1 (ESRI 2011). 

 

b. 1.0 m LiDAR point cloud collected by the National Center for Airborne Laser Mapping 
(DOI: 10.5069/G98G8HMJ) on 7 August 2010. The point cloud was obtained from the 

OpenTopography Facility (2011). It is displayed in two dimensions using Quick Terrain Reader 
(Applied Imagery 2012). 

 

b. 
 

a. 
 

http://nationalmap.gov/
http://dx.doi.org/10.5069/G98G8HMJ
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Vertical accuracy also limits the conclusions that can be drawn from 
L i DAR data or products. Most often, vertical accuracy is determined by 
ground truthing. The elevation of bare-earth points is remeasured using a 
different method, such as a differential GPS device. At each point, the 
LiDAR-derived elevations are compared to the GPS-derived elevations. 
Sometimes, other methods, such as gauge data in riparian systems (Hall et 
al. 2009) or image interpretation-based point counting in inaccessible 
terrain (Jenkins and Frazier 2010), are used to check the vertical accuracy 
of LiDAR data. Two metrics—root mean square error (RMSE) and funda-
mental vertical accuracy (FVA)—are used to quantify vertical resolution 
(NOAA 2008; USGS 2010). The RMSE represents the squared average 
difference between the elevations measured using LiDAR and the eleva-
tions measured using another technique, such as GPS. It is similar to one 
standard deviation. The FVA represents a 95% probability that the accura-
cy of a bare earth point will be greater than or equal to a specific value. The 
FVA is calculated by multiplying the RMSE by 1.96. It is similar to two 
standard deviations. For example, one TLS-derived DEM of western can-
yons reported an RMSE of 0.025 m and an FVA of 0.049 m (Perroy et al. 
2010). When the height of a feature is less than the FVA, it cannot be 
measured accurately. For instance, neither the height nor the length of 
large woody debris in riverine systems could be accurately measured with 
a 1.0 m resolution LiDAR-derived DEM with a vertical accuracy of 0.50 m 
(Frazier et al. 2012). It is important to note that, for two reasons, the hori-
zontal accuracy of LiDAR data is generally treated as a function of vertical 
accuracy. First, horizontal accuracy is difficult to ground truth and evalu-
ate, particularly in areas with few planimetric surfaces. Second, the hori-
zontal accuracy must be high to achieve high vertical accuracy (NDEP 
2004).  

If LiDAR data have not been ground truthed, the metadata usually contain 
a statement of the vertical accuracy from the manufacturer of the LiDAR 
system. However, the accuracy of the LiDAR scanner itself may not always 
reflect the true accuracy of the processed data, which also must incorpo-
rate, for example, the accuracies of the IMU and the GPS. The Universal 
LiDAR Error Model (ULEM) is a type of metadata that calculates LiDAR 
accuracies by propagating system-specific measurement errors through 
the derivation of x, y, and z values from the raw sensor data. It is not yet in 
widespread use, but it indicates that the ability to quantify the accuracy of 
LiDAR data is an area of active research and that methods can be expected 
to improve. 
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In addition to evaluation of the spatial resolution, the classification accu-
racy of land cover or vegetation classes in LiDAR-derived products, such 
as DEMs or CHMs, is quantified on a scale of 0% to 100% by using three 
metrics: user’s accuracy (UA), producer’s accuracy (PA), and/or overall 
accuracy (OA). Whenever possible, in this review these metrics are pre-
sented together in the following form: UA/PA. UA quantifies how well 
each pixel in the product represents the field conditions in the correspond-
ing area. For example, in a floodplain vegetation classification study by 
Geerling et al. (2007), 13 pixels were classified as dominated by Bromus 
inermis (smooth brome) and Eryngium campestre (field eryngo). Four of 
the 13 corresponding field validation plots were actually dominated by 
these plants. In this case, UA = (4/13) × 100 = 31% for the B. inermis/E. 
campestre vegetation category. In contrast, PA describes how well the 
product classifies each pixel. Using the same example, 53 field validation 
plots were dominated by the B. inermis/E. campestre vegetation category. 
Just 4 of the corresponding 53 pixels in the product were classified as 
such. The PA = (4/53) × 100 = 8% for this category. Finally, the OA of 
37.0% reported by Geerling et al. (2007) represents the combined accura-
cy of all eight vegetation categories in their classification system.  

2.4 Current federal LiDAR guidelines 

Because LiDAR technology is still developing, few standards have been set 
for data collection. As of this printing, the US Army Corps of Engineers 
(USACE) has no standards or requirements for LiDAR data collection or 
processing. In December 2011, USACE formed a LiDAR Community of 
Practice (COP) (Finnegan 2012). USACE standards for data collection and 
processing are forthcoming. The standards and specifications developed 
by the LiDAR COP will take precedence over the information in the follow-
ing paragraphs. Until then, we recommend adherence to the minimum 
guidelines and specifications published by the US Geological Survey 
(USGS 2010) and the Federal Emergency Management Agency (FEMA 
2010). These minimum specifications guide data collection and the use of 
LiDAR data for NED and flood hazard mapping. Although specifications 
from the Federal Geographic Data Committee (FGDC) Wetlands Sub-
committee permit wetland mapping using LiDAR data, these minimum 
specifications for geographic data were not developed specifically for 
LiDAR data, so they do not specify requirements for point spacing or verti-
cal accuracy (FGDC 2009).  
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Investigators should examine the spatial resolution of LiDAR data and 
products to ensure that these metrics meet USGS and FEMA minimum 
specifications. If LiDAR data are to be included in NED, unprocessed 
point-cloud data must have a nominal pulse spacing of one point every 
1.0–2.0 m. The horizontal resolution of LiDAR-derived DEMs should be 
3.0 m or less (USGS 2010). FEMA requires the same post spacing in flat 
floodplains characterized by high flood risk although values as low as one 
point every 5.0 m are acceptable in low-risk, hilly terrain (FEMA 2010). As 
of 2012, a post spacing of one point every 0.5 m in point-cloud data is 
common and considered repeatable (Finnegan 2012). Post spacing as high 
as one point every 0.35 m has been reported from airborne systems (Lang 
and McCarty 2009). Point clouds from TLS can have a post spacing as 
high as one point every 1.2–2.0 mm (Hodge et al. 2009b) although spacing 
depends on the distance from the scanner. Areas closest to the scanner 
have the closest point spacing. The literature suggests that LiDAR-derived 
products made from data collected by ALS commonly have horizontal 
resolutions of 1.0 m (Hall et al. 2009; Maxa and Bolstad 2009; Jenkins 
and Frazier 2010; Frazier et al. 2012). Horizontal resolutions of products 
created from TLS can be as low as 1.0 mm (Hodge et al. 2009b) or 0.25 m 
(Perroy et al. 2010).  

Investigators should also check the reported vertical accuracy estimate for 
each dataset to ensure that it meets current USGS or FEMA guidelines. 
Although the wetlands subcommittee of the FGDC currently has no stand-
ard for vertical accuracy, the USGS requires a vertical accuracy of 24.5 cm 
at the 95% confidence level for LiDAR products included in NED (USGS 
2010). FEMA’s specifications for mapping high-risk, flat floodplains re-
quire the same vertical accuracy although vertical accuracies of 147 cm are 
acceptable in hilly areas with low risk of flooding (FEMA 2010). The litera-
ture suggests that vertical accuracies of 15.0 cm are common and are con-
sidered repeatable (Lang and McCarty 2009; Zhao et al. 2010). However, 
reported vertical accuracies may be as high as 1.3 mm for data collected by 
TLS (Hodge et al. 2009b) or as low as 0.63 m (RMSE = 0.32 m) for older 
datasets or for data collected in dense vegetation, such as conifer forests 
(Reutebuch et al. 2003). 

With regard to classification accuracy, the wetlands subcommittee of the 
FGDC recommends a PA of 98% for the correct identification of wetlands 
vs. nonwetlands when wetland size is at least 0.2 ha (0.5 acres). A PA of 
85% is recommended for attribute accuracy, meaning that the wetland was 
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classified as the correct type, such as PFO4B (palustrine, forested, needle-
leaved evergreen, saturated), using the FGDC Wetlands Classification 
Standard. At this time, there are no requirements for UA (FGDC 2009). 

2.5 Recommendations  

LiDAR technology is constantly being upgraded and refined, ever enhanc-
ing our ability to view the Earth at larger and larger scales. Although 
LiDAR may accurately represent coarser-grained features, such as channel 
morphology, it may not capture all of the fine-grained features, such as 
some changes in sediment texture. Because the field is still evolving, there 
are few guidelines or standards regulating data collection and processing. 
Therefore, the following recommendations are made with the understand-
ing that any guidelines developed by USACE’s newly formed LiDAR COP 
will take precedence. For now, investigators should make sure that the 
data meet or exceed the minimum federal specifications described by 
FEMA (2010) and the USGS (2010). High-resolution data are recom-
mended for preliminary OHWM and wetland delineations although the 
term “high resolution” will be defined differently as LiDAR technology 
continues to develop. As of 2014, TLS datasets often provide the highest 
spatial resolution and will be most useful for delineation purposes, with 
one exception. Perroy et al. (2010) found that ALS produces more accurate 
results than TLS in steeply sloped, deeply incised, first-order streams. 
Low, slow-flying aircraft and slow-moving vehicles also collect high-
resolution LiDAR data. Future technological advances will likely result in 
the collection of high-resolution data, regardless of platform type.  
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3 Using LiDAR Data in 
Preliminary OHWM Delineations 

During a preliminary delineation, remote sensing resources, including 
satellite imagery, aerial photographs, soil maps, vegetation maps, geology 
maps, or rainfall data, may be used to approximate the signature of the 
OHWM across the landscape (Lichvar and McColley 2008). The literature 
suggests that LiDAR data are another remote sensing resource that may be 
useful, provided that investigators are cognizant of the channel discharge 
history. Once relationships between discharge history and LiDAR survey 
dates have been determined, LiDAR data and products can be used during 
preliminary delineations of the OHWM boundary to discern patterns in 
vegetation density and some breaks in slope across the landscape. LiDAR 
is less useful, however, for documenting changes in sediment texture.  

Before LiDAR data can be used during preliminary delineations of the 
OHWM boundary, the data collection date should be considered in the 
context of discharge history because the vegetation patterns and channel 
morphology are a reflection of the recent flow patterns. Vegetation is often 
absent from a stream channel immediately after a moderate to large event, 
but it may reestablish within the active channel during extended periods of 
low flows. Likewise, the active channel boundary tends to remain stable 
for low to moderate discharge events but may shift after a large flood 
event. Thus, understanding the discharge history is critical to interpreting 
the LiDAR data. Metadata contain a table showing the date and location of 
each survey or flight. Data collected prior to a large flood event, such as 
those generated by tropical storms or hurricanes, may be less useful be-
cause these events are capable of altering the channel morphology. Data 
collected after years of low flows need to be scrutinized more closely be-
cause vegetation patterns may hide the physical channel features.  

LiDAR data collected prior to the most recent flood or ordinary flow event should be used 
with caution because channel morphology and the locations of OHWM indicators may 
have changed since the data were collected.   
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Figure 4 suggests that the channel morphology of the Humboldt River in 
northwestern Nevada changed between 1972 (Fig. 4a) and 2010 (Fig. 4b). 
The sinuous, winding section of the active channel mapped in 1972 ap-
pears to be a high flow channel in 2010. However, it is important to note 
that some of these morphological differences, such as the presence of 
small tributaries, are attributable to differences in the horizontal resolu-
tion of the data (10 m vs. 1.0 m). This type of comparison can sometimes 
be useful for determining channel stability, particularly whether or not a 
channel might return to pre-flood conditions after a large flood event. 
LiDAR data collected before a flood event can also be used to map physical 
features located above the active channel, such as mature vegetation or a 
terrace (abandoned floodplain) boundary. LiDAR-derived maps showing 
the positions of these terrace indicators may help an investigator focus the 
field investigation by distinguishing the outer limit of potential OHWM 
locations.  

3.1 Mapping vegetation patterns 

Once relationships between discharge history and survey dates have been 
determined, LiDAR data or products can be used to map an estimated 
boundary of the OHWM by using the landscape-level signature created by 
a combination of three indicators: changes in vegetation density, breaks in 
slope, and changes in sediment texture. The literature suggests that LiDAR 
topographic data alone are unable to accurately classify and map vegeta-
tion (Geerling et al. 2007; Anderson et al. 2010). However, CAMs or 
CHMs created from LiDAR point clouds and used in combination with 
another remote sensing resource can be used to map patterns among vege-
tation units based on height. In some instances, plant communities on 
terraces (abandoned floodplains) may be the most mature and the densest 
as succession is not set back by the stochastic disturbance of flood events 
(Curtis et al. 2011). LiDAR data can be used to map these communities, 
and communities of tall shrubs, that can become established either in the 
floodplain or in active channels characterized by a high water table. For 
instance, a 0.5 m resolution CAM that incorporated topographic data and 
return intensity distinguished among young (less than 15 years), mature 
(16–50 years), and old (greater than 50 years) stands of Populus deltoides 
ssp. fremontii (= Populus fremontii) (cottonwood) growing along the San 
Pedro River in southeast Arizona (Farid et al. 2006). Classification accura-
cy varied with stand age. Most of the old-stand validation plots were classi-
fied correctly (PA = 89%), but the likelihood of a pixel representing actual 
field conditions was quite low (UA = 38%). The reverse was true of young 
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stands, which had UA/PAs of 100%/41%. Mature stands were represented 
most accurately, with UA/PAs of 78%/73%. This research suggests that 
changes in canopy height or return intensity do not always correspond to 
stand growth form. Therefore, any changes in stand growth form suggest-
ed by LiDAR data must be verified in the field. 

Other research suggests that LiDAR data accurately classify tall plants, 
such as trees and shrubs, but are much less accurate when distinguishing 
among smaller plants and bare earth. Forested communities were well 
classified using a 2.0 m LiDAR-derived CHM with a vertical accuracy of 
0.07 m (Geerling et al. 2007). Almost all of the validation plots in riparian 
forests were classified correctly (PA = 97%), and there was a 100% proba-
bility that pixels classified as forest represented actual field conditions. 
Communities of tall shrubs, such as Sambucus nigra (black elder), were 
also well classified with UA/PAs of 94%/84%. However, the overall classi-
fication accuracy dropped to just 41% when five broad vegetation classes 
were considered, including bare ground, grasses and herbs, herbs and low 
shrubs, tall shrubs, and forest (Geerling et al. 2007). One reason that 
LiDAR has difficulty distinguishing among smaller plants is that height 
differences among herbaceous plants and low shrubs are sometimes not 
significant (Hopkinson et al. 2004). For example, a 3 m resolution CHM 
with a vertical accuracy of 0.10 m could not distinguish herbaceous plant 
communities from Artemisia arbuscula (dwarf sagebrush) communities in 
the Arid West region (Sankey and Bond 2011). However, height differences 
measured in field validation plots were not significantly different either.  

A second reason that grasses, herbs, and small shrubs are poorly repre-
sented in LiDAR-derived products is because the data consistently under-
estimate the height of the canopy. Although LiDAR data underestimate the 
height of all vegetation, the relative vertical error is greatest for small 
plants and aquatic vegetation (Hopkinson et al. 2004). There are several 
explanations for this underestimation (Hopkinson et al. 2004; Su and 
Bork 2006; Sankey and Bond 2011). First, when the pulse density is low, 
laser pulses often miss thin plants with vertically oriented leaves or low 
leaf area indexes, such as sedges, rushes, or grasses. In these instances, 
only the surface of the Earth is mapped. Likewise, the height of shrub 
canopies, particularly those with long, linear, highly dissected, or small 
leaves, such as Salix spp., Tamarix spp., or Artemisia spp., is often under-
represented in LiDAR data because pulses easily penetrate the canopy, 
producing few first returns from the top.  
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Another explanation for poor representation of smaller plants in LiDAR 
data is that when vegetation is extremely dense, LiDAR pulses may fail to 
reach the Earth’s surface. Under these circumstances, the height of the 
Earth’s surface is overestimated when returns from the low canopy are 
mistaken for bare earth. Consequently, vegetation height is underestimat-
ed when these inflated bare earth points are subtracted from the canopy 
returns. For instance, in one classification of rangeland vegetation, a 
LiDAR-derived product classified all shrublands as grasslands, an accura-
cy of 0.0% for the category (Bork and Su 2007). This error was attributed 
to the fact that these shrubs reproduced by root sprouting and formed 
dense patches. The dense shrub cover resulted in an overestimation of the 
height of the Earth’s surface and an underestimation of canopy height (Su 
and Bork 2006). Although absolute vertical errors tend to increase with 
vegetation height, these errors have a greater relative effect on the canopy 
estimates of smaller plants. Because many LiDAR datasets have a vertical 
accuracy of ±0.15 m, they cannot distinguish between small plants and 
bare earth.  

Given these limitations, low-resolution LiDAR data collected using multi-
ple return systems will be least useful, and high-resolution data collected 
from waveform ALS or TLS will be most useful, for mapping vegetation 
during preliminary OHWM delineations. Vegetation indicators found at or 
below the OHWM, such as the new growth of vegetation in the active 
channel or a change in vegetation species from herbaceous plants to small 
shrubs, may be difficult to discern from DSMs or LiDAR-derived products. 
However, data that were collected shortly after an ordinary event while 
vegetation is reestablishing in the channel may be useful for estimating the 
OHWM boundary, provided that plant communities on the floodplain and 
terrace are well established. Some LiDAR data, such as those collected 
from TLS, may enable investigators to map differences in height and vege-
tation density among grasses, herbaceous plants, and shrubs. However, 
the literature suggests that changes in species composition and stand 
growth form cannot be determined with accuracy using remote sensing 
data alone. These types of changes must be confirmed in the field.  

In addition to mapping live plant communities, LiDAR data may also be 
useful for mapping piles of large woody debris. Although drift features are 
of limited use for determining the OHWM boundary (Mersel et al., in 
prep.), they can be used as evidence of flow because they verify that a 
channel is active, particularly in sparsely vegetated arid landscapes. Fu-
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sions of LiDAR data and another type of remote sensing data are most 
accurate for mapping the distribution of large woody debris. For instance, 
Eamer and Walker (2010) fused LiDAR data (0.6 to 2.0 points/m2 pulse 
density) with 0.20 m spatial-resolution aerial orthophotography. The 
result was a 2.0 m resolution DEM, with 0.20 m vertical accuracy, that 
classified Canadian beaches into two land cover classes—sand and large 
woody debris—with an overall accuracy of 87.3%–93.3% at three locations. 
However, in heavily vegetated project areas, LiDAR-derived products may 
be less useful for mapping large woody debris or drift piles. On the vege-
tated floodplains of the Namoi River in Australia, a LiDAR-derived prod-
uct was unable to identify locations of large woody debris piles (Frazier et 
al. 2012). The 1.0 m resolution DEM produced from an ALS (vertical reso-
lution less than 0.5 m) classified with an accuracy of 0% large woody de-
bris.  

3.2 Mapping topographic patterns and channel morphology 

LiDAR data or products are used in a variety of hydrogeomorphic applica-
tions that are potentially useful to regulators, including mapping flood-
plains and modeling inundation extents (Frazier et al. 2012), modeling 
floodplain widths (Jones et al. 2007), modeling hydrologics and hydraulics 
(Hall et al. 2009), determining flow paths (Jones et al. 2008) and connec-
tivity (Lang et al. 2012), delineating ditches (Bailly et al. 2008), and map-
ping erosion and deposition in coastal dunes (Woolard and Colby 2002). 
The literature suggests that LiDAR models or products can also be used in 
preliminary identifications of the OHWM boundary to map channel mor-
phology and changes in topography. DTMs and bare earth DEMs created 
from the last returns in LiDAR point clouds may be useful for estimating 
the locations of some of the breaks in slope that signify potential bounda-
ries of the OHWM. 

In preliminary delineations of the OHWM boundary, LiDAR data or prod-
ucts can be used to map the approximate location of the OHWM signature 
across the landscape. Maps created during preliminary delineations pro-
vide investigators with a bird’s eye view, enabling them to see landscape-
scale patterns created by the locations of indicators relative to one other. 
In some landscapes, this type of pattern is difficult to discern at smaller 
spatial scales, such as at the site level. The literature suggests that LiDAR 
is commonly used to map riparian systems, including the tops of channel 
banks, bank slopes, channel beds, bars, benches, and floodplains (Frazier 
et al. 2012). Jones et al. (2007) mapped up to 88.0% of channel features, 
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including valley floors, terrace fronts, paleochannels, and alluvial fans, 
using a 2.0 m resolution LiDAR-derived DEM with a vertical accuracy of 
0.10 m. Likewise, a 0.5 m resolution DEM derived from LiDAR topograph-
ic and intensity data classified dry stream channels in southeastern AZ 
with a UA/PA of 94%/80% (Farid et al. 2006). On a smaller scale, four 
riverine habitat categories based on water surface roughness were distin-
guished using point clouds produced from TLS (Milan et al. 2010). Riffles 
and pools/glides were represented with 88%–84% overall accuracy. Cas-
cades/rapids and runs were more difficult to classify (50%–57% overall 
accuracy).  

In addition to illustrating channel morphology and topographic changes, 
tools found in LiDAR software and in some GIS enable investigators to use 
LiDAR data or products to estimate the length and width of 
hydrogeomorphic features, such as the active channel, the floodplain, or 
the terrace. These values can then be used to calculate other variables, 
such as sinuosity. The height or depth of other features, such as the height 
of a channel bank or the depth of a channel bed, can be directly measured 
in point-cloud data and DTMs using the tools in LiDAR software. Other 
variables, such as slope, can be calculated from length and depth meas-
urements. In Figure 5, measurement tools in QTR 7.1.6 are used to meas-
ure the depth of a swale (2.66 m) and to calculate the slope of the bank 
(0.18) from a DTM derived from a LiDAR point cloud collected using TLS 
in eastern Vermont.* Channel depth cannot be directly measured when 
LiDAR data are displayed using a two-dimensional GIS, such as in Figure 
6a. However, changes in elevation can be estimated because each pixel 
contains an elevation value, which is displayed using different colors. It is 
important to note that most GIS should not be used to directly measure 
elevation of LiDAR products even though they provide measuring tools 
and display base map data in three dimensions. In most instances, these 
measuring tools are calibrated to the base map and not to the imported 
LiDAR layer.  

                                                                 
* D. Finnegan and A. LeWinter, unpublished LiDAR data from Ascutney, Vermont. USACE ERDC-CRREL, 

2012. 
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Figure 5.  Digital Terrain Model (DTM) derived from LiDAR data collected using a terrestrial 
platform in eastern Vermont* and displayed using Quick Terrain Reader 7.1.6 (Applied 

Imagery 2012). In the legend, height is measured in meters. Elevation of the bank and the 
swale are used to calculate slope (0.18) over a distance of 15 m.  

  

As described in Section 2, the resolution of the data determines which 
measurements can be made. Features that are shorter than the post spac-
ing in a point cloud or the horizontal resolution of a DEM cannot be accu-
rately discerned or measured. For the purposes of OHWM delineations, 
small or narrow features, such as some point bars or coarse woody debris, 
will not be accurately represented in LiDAR data. For the same reason, 
sharp breaks in slopes, such as those associated with some channel banks, 
ditches, or canals, are not well represented in LiDAR data. In addition, 
LiDAR data may not represent flow direction accurately because high-
resolution data may show numerous small changes in elevation over a 
relatively small area. These small-scale discrepancies in topography may 
need to be smoothed before flow direction can be accurately determined. 
In these instances, data that have been enhanced with breaklines will be 
most useful for delineation purposes. 

For preliminary OHWM delineations, measurements made using LiDAR 
data should be considered estimates. All GIS measurements should be 
verified in the field (Hall et al. 2009; Perroy et al. 2010). It is extremely 
important to examine metadata and to ground truth, particularly when 
using LiDAR data that were originally collected for a purpose other than 
OHWM delineations. As described in Section 2, the data collection and 
processing methods and purpose for which the data were collected can 
have a great impact on the product. Hall et al. (2009) illustrate why inves-
                                                                 
* D. Finnegan and A. LeWinter, unpublished LiDAR data from Ascutney, Vermont. USACE ERDC-CRREL, 

2012. 
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tigators cannot rely on remotely sensed data alone. They used a combina-
tion of hyperspectral imagery and a 1.0 m resolution LiDAR-derived DEM 
with a 0.15 m vertical accuracy to map a reach of the South Fork of the 
Humboldt River in Nevada. The DEM represented the last returns of a 
LiDAR point cloud originally collected for fire management purposes by 
the Department of the Interior’s Bureau of Land Management (BLM). It 
was used to measure stream channel cross sections, to develop a longitu-
dinal profile of a reach, and to measure sinuosity and channel slope. These 
measurements and Manning’s equation were also used to calculate dis-
charge for the reach. Gage data were used to check the accuracy of the 
results. Unexpectedly, the flow rate calculated from the LiDAR-derived 
product was 1.82 times slower than that of the gage data from the same 
time period. Although gage data are not error free (Curtis et al. 2011), Hall 
et al. (2009) determined that, on average, the DEM underestimated the 
height of the water surface by 15.25 cm. The error was attributed to the 
infrared LiDAR processing algorithms, which were designed to calculate 
elevation in terrestrial systems. Terrestrial algorithms distort the bathy-
metric portion of the returns because they assume that LiDAR pulses are 
traveling at a constant rate through one medium—air. However, in riverine 
systems, pulses actually travel through both water and air at two different 
rates (Kinzel et al. 2007). This is one reason that the location of OWHM 
indicators and all estimates made using LiDAR data must be verified in the 
field. Other sources of error in LiDAR topographic data are discussed in 
Section 4.2. 

3.3 Mapping changes in sediment texture 

The literature suggests that most LiDAR models or products are unable to 
represent small changes in sediment texture, the third indicator involved 
in preliminary identifications of the OHWM boundary. Although LiDAR 
technology has been used in conjunction with field data to document cor-
relations among elevation, duration of ponding, and fine-scale changes in 
sediments (Lichvar et al. 2008), the sediment changes were not measured 
using LiDAR data. The fine-scale changes in sediments, such as mud crack 
width and depth, were measured in the field. Given the current technolo-
gy, LiDAR products are useful for mapping large changes in sediment 
texture only, such as a change from boulders to gravel or boulders to sand. 
A 1.0 m resolution LiDAR-derived DEM with a vertical resolution of less 
than 0.5 m cannot detect differences among smaller substrate classes, 
such as cobble, gravel, sand, and mud (Frazier et al. 2012).  
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However, as technology advances and more datasets become available, 
point clouds, DTMs, and LiDAR-derived DEMs may become more useful 
for mapping changes in sediment texture associated with the OHWM 
boundary. The literature suggests that high-resolution LiDAR data collect-
ed using TLS can map most changes in sediment texture associated with 
placement of the OHWM boundary. One example, a TLS dataset of 3.8 
million points, which had a mean spacing of 0.012 m and a vertical accu-
racy of 0.009 m, documented differences in grain roughness from 40 mm 
(D16) to 130 mm (D84) in a gravel bar (Heritage and Milan 2009). Likewise, 
Hodge et al. (2009b) examined differences in sediment sizes in the gravel 
bars of two channels by using a TLS with a 4 mm diameter laser footprint 
and a minimum point spacing of 1.2 mm to create a 1.0 mm resolution 
DEM. The average sediment size (D50) ranged from 32 to 63 mm in the 
first channel and from 18 to 33 mm at the second site. Data collected at 
this scale could be used in preliminary delineations to estimate the loca-
tion of the OHWM boundary and to document changes from sand to cob-
bles to boulders. However, it would be unable to distinguish between sand 
and silt.  

3.4 Conclusions 

In summary, the literature suggests that LiDAR data and products can be 
useful for preliminary delineations of the OHWM boundary. Before the 
channel signature is interpreted, the recent flow history of the site should 
be determined, if possible. In some cases, recent large floods will have 
altered the OHWM signature, and LiDAR data will not reflect “ordinary” 
conditions at the site. If “ordinary” conditions exist, two OHWM indica-
tors—vegetation density changes and break in slope—may be interpreted 
through LiDAR data. Currently, only large sediment texture changes can 
be detected. Vegetation density changes are best observed in landscapes 
dominated by trees and tall shrubs. Because LiDAR consistently underes-
timates vegetation height, it will be less useful for estimating changes in 
vegetation density in sparsely vegetated areas and in areas dominated by 
short shrubs, herbs, and grasses. However, ephemeral and intermittent 
channels are often present in these sparsely vegetated regions. LiDAR is 
capable of capturing many of the topographic changes in channel mor-
phology in these dry systems. The horizontal resolution and vertical accu-
racy of the data determine if the OHWM break in slope can be measured 
with sufficient accuracy. Particular attention must be paid to determining 
if the depth of the channel is less than the vertical accuracy of the LiDAR 
data. Although LiDAR provides an opportunity to view the OHWM signa-
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ture at the landscape scale, all information gathered from LiDAR-derived 
products during preliminary delineations of the OHWM boundary must be 
verified in the field.  
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4 Using LiDAR Data in the Preliminary Data-
Gathering Stage of Wetland Delineations 

As LiDAR technology advances, data collection increases, and LiDAR data 
are used more frequently in a variety of wetland applications. For instance, 
in 2010, the Minnesota Department of Natural Resources began a 
statewide National Wetland Inventory mapping project using LiDAR and 
radar imagery and 0.6 m digital ortho and stereo imagery (Tande and 
Michaelson 2011). USACE’s Wilmington District and Raleigh Field Office 
have used LiDAR data for preliminary delineations (Lekson 2012). Having 
provided evidence of spoil piles, fill, and other anthropogenic disturb-
ances, LiDAR data are potentially useful for enforcement (Shaeffer 2008). 
This section also provides many examples in which LiDAR data or prod-
ucts have been used for wetland identification and mapping. However, it is 
important to note that the studies cited here were based on many different 
definitions of wetlands. With the exception of Shaeffer (2008), Lichvar et 
al. (2006), and Russell et al. (2010), the research described here did not 
explicitly use hydrophytic vegetation, hydric soils, and wetland hydrology 
as the criteria to determine wetland presence or absence. For example, 
Lang and McCarty (2009) used LiDAR to map inundated areas; detailed 
examination of soils and vegetation was not mentioned. Maxa and Bolstad 
(2009) ground-truthed LiDAR-derived wetland maps primarily by vegeta-
tion type. The hydrologic criteria used to distinguish wetlands from up-
lands were not stated. Jenkins and Frazier (2010) delineated “upland 
swamps” (headwater wetlands surrounded by upland forest) remotely 
using LiDAR and multispectral imagery. They assessed accuracy by using 
image-interpretation-based point counting rather than ground truthing. 
Therefore, the end products of wetland research, such as classification 
accuracies, should be viewed critically when applied to delineation proce-
dures as accuracies are likely to change with the definition of “wetland.” 

The literature suggests that LiDAR data and products will be most useful 
in the preliminary data gathering stage of wetland determinations. During 
this off-site stage of the investigation, the USACE Wetland Delineation 
Manual recommends examining many types of remote sensing data, in-
cluding (but not limited to) NWI products, Natural Resources Conserva-
tion Service (NRCS) soil surveys, USGS quadrangle maps (1:24,000), 
USGS land use and land cover maps, and aerial/satellite imagery (Envi-
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ronmental Laboratory 1987). LiDAR data and products can be used in 
conjunction with other remote sensing data to plan an on-site investiga-
tion by dividing a project area into land cover types (LCTs) and, in some 
instances, drawing preliminary wetland boundaries that can be refined 
during the on-site investigation. However, LiDAR data do not contain 
enough information to make wetland determinations for regulatory pur-
poses. 

Before LiDAR data are used in a preliminary investigation, the temporal 
context of the data should be examined. First, the date of the LiDAR sur-
vey shown in the metadata should be compared with the current date. If 
there has been a large disturbance event between the two dates, the data 
should be used with caution. For instance, LiDAR data collected prior to a 
hurricane or tropical storm may be less useful because storm events can 
cause extreme erosion, deposition, and damage to vegetation (Enwright et 
al. 2011). Other natural disturbances, such as wildfires, avalanches, mud-
slides, or beaver activity, may increase or decrease wetland area (Envi-
ronmental Laboratory 1987), making older LiDAR datasets obsolete. Con-
versely, data collected prior to an unpermitted anthropogenic disturbance, 
such as unauthorized fill, could be used along with other remote sensing 
resources to approximate the location of the pre-disturbance wetland 
boundary. A second temporal consideration is whether the data were col-
lected during the growing season as the definition of wetland hydrology is 
linked to the concept of growing season. Investigators should compare the 
LiDAR collection date to the dates of the growing season, listed in an 
NRCS WETS Table (http://www.wcc.nrcs.usda.gov/climate/wetlands.html). Growing 
season is discussed in greater detail in Section 4.3. 

Provided that temporal relationships between data collection date, dis-
turbance events, and growing season are recognized, LiDAR point clouds, 
models, or products may help investigators discern vegetation patterns, 
changes in topography, and inundation patterns. However, LiDAR data 
should not be used to make vegetation determinations, to map hydric 
soils, or to determine whether wetland hydrology is present. All areas 
identified as having the potential to support hydrophytic vegetation, hy-
dric soils, or wetland hydrology should be verified during the on-site field 
investigation. 

http://www.wcc.nrcs.usda.gov/climate/wetlands.html
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4.1 Mapping vegetation patterns 

The literature suggests that, in some instances, LiDAR data or products 
may help investigators discern vegetation patterns during the off-site, 
data-gathering portion of a wetland delineation. During this preliminary 
investigation, investigators summarize all remote sensing information 
available and identify LCTs that require less field sampling to verify, such 
as obvious nonwetlands and the interiors of obvious wetlands. During the 
on-site portion of the investigation, sampling is focused on transition 
zones between obvious wetlands and obvious nonwetlands. A project area 
may be divided into LCTs based in part on vegetation patterns discerned 
from LiDAR data or products. Figure 6 provides an example of several 
types of remotely sensed data from Davis Park, New York, including high-
resolution satellite imagery, NWI wetland maps, National Land Cover 
Data (NLCD), and a hydric soil map. Three LiDAR products, a DEM, con-
tour lines, and a CHM, are also shown. These data were used to divide a 
hypothetical project area into three LCTs based on plant height and 
growth form. The LiDAR CHM shows three height classes of vegetation 
(Figure 6b): short (blue: ~0–3 m), intermediate (yellow: ~4–6 m), and tall 
(green: ~6–10 m). USGS land cover maps (Figure 6c) and NWI wetland 
polygons (Figure 6a) suggest that the vegetation in LCT1 is primarily her-
baceous; the vegetation in LCT2 is composed of shrubs and herbs; and 
LCT3 is composed of shrubs, barren land, and a hiking trail. Overall, the 
LiDAR CHM, the NWI wetland polygons, and the hydric soil map suggest 
that less sampling effort is needed in LCT1, which is dominated by 0 to 3 
m herbaceous vegetation, and LCT3, which is characterized by 6 to 10 m 
shrubs and barren land, because they appear to be obvious wetland and 
upland, respectively. These remotely sensed resources suggest that after 
LCT1 and LCT3 are verified in the field, the boundary investigation should 
focus on LCT2. 
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Figure 6.  Comparison of three LiDAR products and four other types of remotely sensed data 
for a hypothetical wetland delineation near Davis Park on Fire Island, New York. 

a. 1.0 m LiDAR-derived digital elevation model and contour lines (Nayegandhi et al. 2010), 
overlain by US Fish and Wildlife Service’s (FWS) National Wetland Inventory (NWI) wetland 
polygons (USFWS 2012) mapped at a scale of 1:24,000 and displayed using ArcMap 10.1. 

 

b. 1.0 m LiDAR-derived CHM (Nayegandhi et al. 2010) displayed using Google Earth Pro (Terra 
Metrics 2010).  

 

b. 
 

a.. 
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Figure 6 (cont.).  Comparison of three LiDAR products and four other types of remotely sensed 
data for a hypothetical wetland delineation near Davis Park on Fire Island, New York. 

c. NLCD mapped at a 30 m resolution (Vogelmann et al. 2001) displayed using Global 
Mapper 13.0. 

 

d. High-resolution satellite imagery overlain by NRCS’s Soil Survey Geographic soil order 
polygons (NRCS 1994) mapped at a scale of 1:577,000 to 1:1,840,000 and displayed using 

CorpsMap 2.7. 

 

In the preliminary data-gathering stage of a delineation, the literature 
suggests that LiDAR data or products will be most useful for mapping 
wetland boundaries characterized by abrupt transitions from wetland to 
upland that coincide with a significant change in vegetation height (e.g., a 
scrub-shrub wetland located in the midst of a forested landscape). Under 
these circumstances, a combination of a 1.0 m LiDAR-derived CHM, 2.4 m 

d. 
 

c. 
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resolution multispectral imagery, and 0.20 m orthorectified aerial photog-
raphy delineated shrub-sedge-dominated wetlands from adjacent upland 
forest with a UA/PA of 97%/96% (Jenkins and Frazier 2010). LiDAR 
products will also be useful for delineating sparsely vegetated wetlands 
from densely vegetated uplands, or the reverse. For instance, in north-
central California, sparsely vegetated vernal pools, characterized by long 
periods of inundation, were easily identified and mapped using a 2.0 m 
resolution LiDAR-derived DEM with 5.0 cm vertical accuracy created from 
a fusion of LiDAR data and IKONOS satellite imagery (Lichvar et al. 
2006). In this study, wetland mapping using remote sensing identified 
169% more vernal pools and swales than field mapping alone. However, 
when vegetation height and density are similar on both sides of the wet-
land boundary, LiDAR data and products will be less useful.  

Although LiDAR data or products may be used to map LCTs based on 
vegetation, they should not be used to make hydrophytic vegetation de-
terminations for two reasons. First, LiDAR cannot identify plants at the 
species level. The literature provides evidence that LiDAR data alone can-
not distinguish among species in the same land cover class (e.g., trees) 
although accuracy improves somewhat when LiDAR is used in combina-
tion with multispectral imagery. For instance, in Wisconsin forests, ever-
green conifers were classified with UA/PAs of 80.3%/86.4% using 
IKONOS satellite imagery fused with a 1.0 m resolution LiDAR-derived 
DEM with a vertical accuracy of 0.15 m (Maxa and Bolstad 2009). Howev-
er, individual species, such as Larix laricina (American larch), Picea mar-
iana (black spruce), and Thuja occidentalis (eastern arborvitae), often 
could not be distinguished from one another. Very few of the pixels repre-
senting L. laricina were classified correctly (PA = 14.3%), and the likeli-
hood of a pixel representing actual field conditions was low (UA = 50.0%). 
Likewise, in a Connecticut River tidal marsh, a 2.4 m resolution LiDAR-
derived DEM (vertical accuracy of 0.06 m) used in combination with mul-
tispectral signatures of three dominant graminoids had difficulty distin-
guishing Typha spp. (cattail) from Phragmites australis (common reed) 
and Spartina patens (salt-meadow cord grass) (Gilmore et al. 2008). 
Although most of the Typha spp. plots were classified correctly (PA = 
95%), the likelihood of a pixel representing actual field conditions was very 
low (UA = 36%). The other two species were classified fairly well, particu-
larly when they occurred as monocultures. P. australis had UA/PA accura-
cies of 96%/66%, and S. patens had UA/PA accuracies of 67%/69%.  
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A second reason why LiDAR data should not be used to make hydrophytic 
vegetation determinations is that the data often cannot determine if vege-
tation is present. As described in Section 3.1, LiDAR data consistently 
underestimate vegetation height. Therefore, vegetation units dominated 
by trees and tall shrubs are usually classified most accurately. Differences 
among classes of shorter vegetation, such as small shrubs, grasses, terres-
trial or aquatic herbs, and bare earth, often cannot be distinguished. In 
Figure 6b, the CHM shows that about half of LCT1 is vegetated. The re-
mainder is mapped as bare earth. The NWI polygons (Fig. 6a) and the 
NLCD (Fig. 6c) show that LCT1 is completely covered by emergent herba-
ceous vegetation, extending farther north and covering twice as much area 
as the LiDAR-derived CHM suggests.  

Overall the literature suggests that, in some wetland types, LiDAR data 
could be used to separate a project area into LCTs based on differences in 
vegetation height. However, field validation of these LCTs is necessary. 
Because LiDAR data cannot identify plants to the species level and some-
times cannot even determine if vegetation is present, vegetation determi-
nations should never be made based solely on point-cloud data or on 
LiDAR-derived products.  

4.2 Mapping topographic and soil patterns 

As described in Section 2.1, infrared LiDAR uses the last return signals 
from lower-energy, longer-wavelength, near-infrared pulses (1064 or 1550 
nm) to determine the height of the Earth’s surface. The resulting topo-
graphic data can be used to model the Earth’s surface across a project site 
during the data-gathering stage of wetland delineations. Provided that 
there have been no severe disturbance events since the data collection 
date, LiDAR topographic data can be used to identify low areas with the 
potential to accumulate water. Because these data provide no evidence of 
the presence or absence of surface water, they should not be used as evi-
dence of wetland hydrology. However, topographic data will be useful for 
dividing a project area into LCTs and for focusing a field investigation on 
areas with the potential to support wetland hydrology. During the prelimi-
nary data-gathering stage of wetland delineations, point-cloud data, mod-
els, LiDAR-derived products, and secondary products may be useful to 
regulators.  

Point clouds and DTMs can be used to identify topographic lows in a land-
scape, to estimate the height of a topographic break, or to calculate the 
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slope of an LCT. Length, width, and height can be directly measured using 
tools in LiDAR software and in some GIS although, as described previous-
ly, narrow or small features that are shorter than the point spacing or 
smaller than the vertical accuracy of the data cannot be accurately meas-
ured. For delineation purposes, changes in elevation over a specific dis-
tance can be measured in each LCT. Slopes can be estimated from these 
measurements and used in support of a secondary hydrology indicator, 

geomorphic position. During the data-gathering stage of wetland delinea-
tions, measurements made using LiDAR data should be considered esti-
mates. All measurements should be verified in the field (Hall et al. 2009; 
Perroy et al. 2010). 

LiDAR-derived products, such as DEMs and contour lines, may also be 
used to identify low areas in the landscape with the potential to pond wa-
ter. Although elevation cannot be directly measured in two-dimensional 
LiDAR-derived DEMs, each pixel contains an elevation value that is dis-
played in raster format using different colors. For example, the LiDAR-
derived DEM in Figure 6a shows that most of LCT3 ranges from 1.1 m 
(green shading) to 11.0 m (red shading) in elevation. As always, spatial 
resolution must be taken into account because both horizontal resolutions 
and vertical accuracy limit the conclusions that can be drawn from a da-
taset. Topographic features that are shorter in length or height than the 
horizontal resolution or vertical accuracy of a dataset cannot be accurately 
measured. For instance, a 1.0 m LiDAR-derived DEM with a vertical reso-
lution of 0.15 m could not be used to discern sedge tussocks 0.75 m wide 
and 0.18 m tall.  

Contour lines derived from a LiDAR point cloud display elevation data in 
two-dimensional vector format (Fig. 6a). In the context of wetland delinea-
tion, the widely spaced LiDAR-derived contour lines in Figure 6a show 
that the elevation of LCT1 is close to sea level (0 to about 1.0 m above sea 
level) and relatively flat, suggesting that it is more likely to pond water 
than LCT3 in which the contour lines are more closely spaced and the 
elevation ranges from 1.1 to 11.0 m above sea level. As with the vegetation 
data, the topographic data suggest that field sampling should focus on the 
southern edge of LCT2 where the elevation gradually increases from 0.1 to 
2.0 m. The NWI wetland polygons (Fig. 6a), NLCD (Fig. 6c), and NRCS 
(Fig. 6d) hydric soil maps show similar patterns, suggesting that wetland 
hydrology and hydric soils are mostly absent in LCT3 but are present in all 
of LCT1 and in the northern portion of LCT2.  
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Secondary products displayed in two-dimensional raster format may also 
be useful to investigators, when available. LiDAR-derived products, such 
as bare-earth DEMs, and mathematical formulas are used to create sec-
ondary products that predict variables that were not directly measured, 
such as slope, aspect, and curvature (Shaeffer 2008) or terrain shape and 
lagg width (Richardson et al. 2010). In predominantly flat (455–500 m 
above sea level) Wisconsin forests, terrain shape and slope products, cal-
culated from a 1.0 m resolution LiDAR-derived DEM (vertical accuracy of 
0.15 m), have been used to map wetlands (Maxa and Bolstad 2009). The 
DEM was used to calculate the terrain shape and slope of features in the 
study area. Negative values for terrain shape indicated topographic de-
pressions while positive values suggested convex landforms. These sec-
ondary products and IKONOS satellite imagery distinguished uplands 
from wetlands fairly well. Pixels representing uplands were usually classi-
fied correctly (PA = 89.8%) although the likelihood of the pixel represent-
ing upland conditions in the field was lower (UA = 82.2%).  

However, the literature suggests that there is some error associated with 
LiDAR topographic data. The error tends to be greatest in areas character-
ized by steep slopes and dense vegetation. Error associated with steeply 
sloping terrain occurs in two ways (Deems et al. 2013). As mentioned 
previously, vertical accuracy depends on horizontal accuracy. Horizontal 
errors, which tend to increase with flight altitude, result in a point being 
incorrectly located on a planimetric surface. The incorrect horizontal loca-
tion points can cause vertical errors, particularly in uneven landscapes. 
Vertical error may also be caused when LiDAR laser footprints spread on a 
sloped surface, increasing the signal-to-return time and inflating the rec-
orded distance from the scanner.  

As described in Section 3.1, elevation may also be overestimated when 
dense vegetation prevents LiDAR pulses from striking the Earth; pro-
cessing algorithms may interpret the last return as representing bare earth 
when it actually represents low vegetation (Hopkinson et al. 2004). For 
this reason, errors in topographic data tend to be greatest in landscapes 
characterized by several vegetative strata (Clark et al. 2004). For instance, 
densely vegetated swamps dominated by deciduous trees, conifers, and 
Alnus incana (= Alnus rugosa) (speckled alder) could not be distinguished 
from surrounding upland forest by using topographic LiDAR data alone 
(Hogg and Holland 2008). Likewise, a landscape-level study of aspen 
parkland found that LiDAR data overestimated the elevation of steeply 
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sloping forest stands and underestimated the elevation of grasslands and 
wet meadows (Su and Bork 2006). Interestingly, other work suggests that 
the reverse is true at smaller scales. When compared to field measure-
ments along 120 m peatland transects, LiDAR topographic data overesti-
mated lower-elevation features and underestimated higher-elevation fea-
tures, muting the overall topographic heterogeneity (Richardson et al. 
2010). Overestimates of lower-elevation features, such as hollows, were 
attributed to the presence of dense vegetation and the GPS unit compress-
ing the peatland surface during ground truthing. Most importantly, the 
literature suggests that classification and mapping errors tend to be great-
est in areas characterized by a gradual transition from upland to wetland 
(Hogg and Holland 2008). Therefore, topographic patterns discerned 
using LiDAR data should be verified in the field. Field validation of LiDAR 
topographic data is essential before using them as evidence of a secondary 
hydrology indicator, such as geomorphic position, microtopographic relief, 
raised ant mounds, or frost-heave hummocks, particularly in densely vege-
tated or conifer-dominated wetlands or steeply sloped wetlands, such as 
some fens. 

Although LiDAR data cannot be used to map changes in soil saturation 
(Garroway et al. 2011), soil wetness indices, another secondary product 
created from LiDAR-derived DEMs, may be useful to investigators. Soil 
wetness indices (Moore et al. 1993; Murphy et al. 2007), which are also 
referred to as topographic wetness indices (Bӧhner et al. 2002; Shaeffer 
2008; Shoutis et al. 2010), use topographic data from LiDAR-derived 
DEMs and a mathematical formula to predict areas where soils are likely 
to be saturated or inundated given their topographic position in the land-
scape. Wetness indices are often calculated using the general formula  

 WI = ln(A/tanβ)  

where A is the catchment area (m2/m) that drains to the point and β is the 
slope in degrees (Moore et al. 1993). This formula produces large index 
values in pixels that are likely to contain wet soils or wetlands and low 
index values in pixels that are likely to contain drier soils or nonwetlands 
located farther from water sources. Before an index can be used for deline-
ation purposes, the formula used to calculate the index should be exam-
ined because other WI formulas, such as WI = ln(A/β), produce low values 
for wet soils and high values for drier, nonwetland soils (Murphy et al. 
2007). In addition, the source and spatial resolution of the topographic 
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data should be examined because wetness indices are constructed from 
DEMs produced from other types of remotely sensed data collected at 
different spatial resolutions. For instance, Murphy et al. (2007) developed 
a 10 m resolution soil wetness index from photogrammetrically derived 
topographic data from 1:35,000 digital aerial photographs. 

The literature provides conflicting evidence regarding the utility of sec-
ondary products derived from LiDAR topographic data. In predominantly 
flat, deciduous forests of Maryland, a wetness index, constructed from a 
LiDAR-derived DEM with a vertical accuracy of less than or equal to 0.15 
m, was less able to distinguish inundated areas from non-inundated areas 
when compared to LiDAR intensity data (Lang and McCarty 2009). How-
ever, other research suggests that the secondary products derived from a 
6 m resolution LiDAR-derived DEM are able to predict the presence of 
jurisdictional wetlands. Shaeffer (2008) modeled the presence and ab-
sence of jurisdictional wetlands in 18 study sites throughout Beaufort 
County, NC, by using a topographic wetness index and localized LiDAR 
elevation data. Ground truthing suggested that the model underestimated 
the presence of jurisdictional wetlands at a landscape scale (the overall 
classification accuracy was 79.8%). At a site-level scale, LiDAR topograph-
ic data and two secondary products—curvature and slope—predicted the 
presence of jurisdictional wetlands with an overall classification accuracy 
of 93.3%. However, the presence of jurisdictional wetlands was overesti-
mated at this fine scale. Russell et al. (2010) reached similar conclusions. 
They predicted the presence of jurisdictional wetlands using LiDAR topo-
graphic data and five secondary products. In three study areas, classifica-
tion accuracy ranged from 58% to 71%. The model tended to miss small 
wetlands and overestimate the area of larger wetlands.  

4.3 Mapping hydrologic patterns 

The literature suggests that LiDAR intensity data and bathymetric LiDAR 
data can be used to map hydrologic patterns in a project area during the 
data-gathering stage of wetland delineations. LiDAR intensity data, which 
measure the strength of the last return pulse, are often used to model the 
presence or absence of surface water. Green or bathymetric LiDAR use 
high-energy, short-wavelength LiDAR pulses (520 nm) to measure water 
depth and to map benthic habitats. Both types of data may provide evi-
dence of wetland hydrology, provided that their temporal limitations are 
recognized. Investigators should examine metadata to determine the col-
lection date because the wetland hydrology criterion has two temporal 
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components that must be met. First, water must be within the top 12 in. 
(30 cm) of the soil surface for 14 or more consecutive days. Second, the 14 
consecutive days must occur during the growing season (USACE 2005). 
Like all remotely sensed data, LiDAR data represent a snapshot in time. 
Point clouds and LiDAR-derived products cannot satisfy the first require-
ment of showing water ponded or at the soil surface for 14 or more con-
secutive days because they represent a single collection date and provide 
no information about the frequency or duration of inundation. However, it 
may still be possible to determine that a project area is inundated or satu-
rated at different times during the growing season if LiDAR intensity data 
are used in conjunction with other remotely sensed data, such as visible 
inundation (primary hydrology indicator) or saturation (secondary hy-
drology indicator) on satellite imagery or aerial photography collected at a 
different time in the growing season.  

Intensity data must be collected during the growing season if they are to be 
used as evidence of wetland hydrology. To determine if data were collected 
during the growing season, the collection date shown in the metadata 
should be compared to the dates of the growing season shown in a WETS 
table (http://www.wcc.nrcs.usda.gov/climate/wetlands.html). LiDAR data could be used 
as evidence of wetland hydrology most easily in the southern United States 
where the growing season can be year round in some counties. However, 
data collected during rainy seasons or in a year of above-average rainfall 
could overestimate wetland acreage while data collected during dry sea-
sons could underestimate wetland acreage (Henry and Gonzalez 2005). 
Some federal agencies, such as the USGS, recommend collection of LiDAR 
data during leaf-off when there is no snow cover and no flooding or unu-
sual inundation (USGS 2010) although collection dates ultimately depend 
on the research question. The literature does suggest that LiDAR data are 
most accurate when collected during leaf-off (Hogg and Holland 2008; 
Lang and McCarty 2009) because vegetation is the greatest source of 
topographic error in LiDAR-derived DEMs (Su and Bork 2006). In the 
north, leaf-off and growing season guidelines effectively restrict data col-
lection to late fall and early spring. LiDAR intensity data collected at these 
times should be used with caution, however, because the extent of inunda-
tion during leaf-off may not be representative of conditions during the 
growing season. It is not unusual for water to pond temporarily during 
leaf-off in nonwetlands for several reasons: spring snowmelt or fall rains 
generate surface flow, evapotranspiration rates are reduced during leaf-

http://www.wcc.nrcs.usda.gov/climate/wetlands.html
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off, and partially frozen soils can reduce infiltration rates. LiDAR intensity 
data collected under these conditions could overestimate wetland area. 

As mentioned in Section 2, LiDAR intensity data represent differences in 
the strength of the return signals across a landscape. In general, clear, 
standing water absorbs or scatters 1064 nm wavelength, near-infrared 
LiDAR pulses, producing very weak returns. In terrestrial landscapes, 
water bodies and wetlands characterized by standing water can be classi-
fied based on this signature. The literature provides conflicting reports 
regarding the classification accuracy of intensity data. In a Maryland wa-
tershed, inundated areas were mapped using intensity data derived from a 
LiDAR point cloud with a 0.15 m vertical accuracy and about a 0.40 m post 
spacing collected early in the growing season (27 March) (Lang and 
McCarty 2009). With an overall accuracy of 96.3%, intensity values from 0 
to 50 were used to distinguish inundated from non-inundated forest. 
Likewise, in an estuarine ecosystem near Nova Scotia, LiDAR data collect-
ed at the beginning of the growing season (20–25 April), before leaf-out, 
were used to construct a 1.0 m resolution LiDAR-derived DEM with a 
0.03 m vertical accuracy (Brennan and Webster 2006). Intensity data with 
values of less than 0.25 classified the intertidal zone and open water with 
UA/PAs of 98.3%/99.8%, and 100%/100.0%, respectively.  

In northern coastal Spain, Chust et al. (2008) compared the classification 
accuracy of LiDAR-derived intensity data with topographic data when 
both were combined with multispectral satellite imagery. A 1.0 m resolu-
tion, bare-earth DEM produced from LiDAR topographic data (collected 
from January to May 2005, vertical accuracy of 0.15 m), combined with 
multispectral satellite imagery, classified and mapped wetlands with 
UA/PAs of 99.0%/77.5%. A combination of multispectral imagery and 
LiDAR intensity data was slightly less accurate. Most of the plots repre-
senting inundated areas were classified correctly (PA = 68.8%), and the 
likelihood of these pixels representing actual field conditions was high (UA 
= 91.1%).  

However, there is also evidence that intensity data collected using 
1064 nm wavelength pulses are unreliable under some environmental 
conditions. Another Nova Scotia study, which used intensity data collected 
at the beginning and end of the growing season (31 March and 30 Septem-
ber), showed no correlation between the intensity of LiDAR returns and 
the presence of soil surface water (Garroway et al. 2011). These results 
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suggest that, under some conditions, intensity data may be unreliable for 
wetland mapping. First, some nonwetland ecosystems may generate low-
intensity returns, suggesting the presence of surface water when in fact 
there is none. Low-intensity returns have been reported from the Earth’s 
surface under conifer canopies (Lang and McCarty 2009) and from row 
crops in agricultural fields (Garroway et al. 2011). Intensity data are most 
useful when collected in sparsely vegetated areas or during leaf-off because 
vegetation has a greater effect on return signal intensity than ponded 
water. An instance in which intensity data may be unreliable is when the 
water’s surface is rough/rippled, turbid, polluted, or covered with organic 
debris, such as leaves (Milan et al. 2010; Newcomb and Lang 2012). Under 
these conditions, water bodies may generate strong returns similar to 
those produced in terrestrial systems. Intensity data also cannot distin-
guish seasonally inundated wetlands, such as Delmarva bays, vernal pools, 
or prairie potholes, from surrounding uplands if they were not inundated 
at the time of data collection (Lang and McCarty 2009). Likewise, intensity 
data will be unable to distinguish seasonally saturated wetlands, such as 
wet flat woods, from surrounding upland unless the data were collected in 
an unusually wet year. 

There are also a few technical concerns associated with the use of LiDAR 
intensity data. Raw intensity data should not be used for regulatory pur-
poses because they contain a great deal of noise, which reduces their abil-
ity to distinguish inundated from non-inundated areas. Lee filtering re-
duces the range of the data and improves the separation between the 
inundated and non-inundated classes (Chust et al. 2008; Lang and 
McCarty 2009). A final concern is that intensity values vary with the type 
of scanner used. Accurate inundation maps have been produced from data 
having intensity values of different orders of magnitude, less than 0.25 
(Brennan and Webster 2006) and 0–50 (Lang and McCarty 2009). There-
fore, no universal standard or specification for LiDAR intensity can be set 
for regulatory purposes. For these reasons, project areas mapped as inun-
dated or non-inundated based on LiDAR intensity data must always be 
ground truthed during a field investigation. 

Topographic data collected by green LiDAR pulses may also be used to 
model inundation. Unlike intensity data, which represent the energy of the 
last return, LiDAR topographic data model the height of the Earth’s sur-
face. Green or bathymetric LiDAR uses high-energy, short-wavelength 
LiDAR pulses (520 nm) to penetrate standing water and to produce re-
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turns from the underlying substrate. Green LiDAR pulses are often used in 
conjunction with infrared pulses to measure water depth by producing 
returns from both the surface and the underlying substrate. Figures 6a and 
6b were collected using bathymetric LiDAR. These data are subject to 
some of the same concerns described previously. Green LiDAR will be of 
limited use in seasonally saturated or seasonally inundated wetlands, 
depending on the water levels at the time of data collection. Green LiDAR 
may provide evidence of wetland hydrology in estuarine wetlands if the 
data were collected during the growing season as described above. All 
information obtained from topographic datasets collected using green 
LiDAR must be ground truthed during a field investigation. 

Overall, the literature suggests three reasons that neither LiDAR intensity 
data nor topographic data collected using green LiDAR are reliable enough 
to constitute a primary indicator of wetland hydrology. First, they provide 
no information about hydrologic duration or frequency. Second, intensity 
values of standing water fluctuate with environmental conditions, making 
it difficult at times to distinguish wetland and nonwetland values. Third, 
because inundation is seasonal or absent in many wetland types, LiDAR 
data will classify wetlands as nonwetlands if they were not inundated at 
the time of data collection. However, LiDAR intensity data could be used 
as a secondary indicator of wetland hydrology. As a secondary indicator, 
the patterns of inundation suggested by LiDAR data would have to be 
confirmed by the presence of another hydrology indicator during the on-
site investigation.  

4.4 Conclusions 

In summary, the literature suggests that LiDAR data, products, or models 
that fuse LiDAR with other remote sensing data to predict the presence of 
three-factor wetlands will be useful for planning-level efforts. In the pre-
liminary data-gathering stage of wetland delineations, they can be used to 
divide a project area into LCTs and to model the presence or absence of 
three-factor wetlands, based on landscape-level patterns in vegetation, 
topography, and hydrology. Dividing a project area into LCTs based on 
patterns of vegetation height will be useful only in wetlands characterized 
by abrupt transition zones. LiDAR will be less useful in distinguishing 
between wetlands and uplands with the same canopy type. LiDAR data 
should not be used to make vegetation determinations since they cannot 
identify plants to species and sometimes cannot detect that vegetation is 
present.  
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LiDAR topographic data can also be used to divide a project area based on 
changes in topography or slope. Topographic data can be used to map 
areas with the potential to accumulate water. Point-cloud data and DTMs 
may be used to measure changes in elevation and to calculate slope. How-
ever, these data should not be used as a primary indicator of wetland hy-
drology, since they cannot detect the presence or absence of water. If the 
resolution is sufficient, ground-truthed LiDAR data could be used in sup-
port of secondary hydrology indicators, such as geomorphic position, 
microtopographic relief, raised ant mounds, or frost-heave hummocks. 
Soil or topographic wetness indices derived from LiDAR products cannot 
be used to determine if a hydric soil is present; however, they may predict 
areas in which soils are likely to be saturated. Because wetness indices are 
developed from different types of topographic data collected at different 
spatial scales, it is important to confirm before using it in a preliminary 
investigation that a wetness index was derived from LiDAR data.  

Provided that LiDAR intensity data were collected during the growing 
season, they could be used as a secondary indicator of wetland hydrology. 
Intensity data identify areas that were ponded or inundated on the survey 
date. However, intensity data alone cannot be used to determine if wetland 
hydrology is present as they represent a single collection date and contain 
no information regarding duration or frequency of inundation. For two 
reasons, intensity values should not be used as evidence that wetland 
hydrology is not present. First, intensity data cannot identify seasonally 
inundated or saturated wetlands that lack standing water. In addition, 
under certain environmental conditions, standing water and wetlands may 
produce strong intensity values similar to those produced in uplands. For 
these reasons, all areas identified as wetland and nonwetland by intensity 
data must be ground truthed during the field investigation.  
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Appendix A: Software for Viewing and 
Managing LiDAR Data and Products 

This appendix describes some software that can be used to view, analyze, 
and measure features in LiDAR data and LiDAR-derived. It presents a 
variety of software, ranging from software for investigators with no GIS 
background to software for those with a great deal of GIS experience. In 
each case, either USACE has a license for these programs or the software is 
a free download.  

ArcMap 10.1 

ArcMap 10.1 is GIS software distributed by Environmental Systems Re-
source Institute (ERSI 2011). ArcGIS supports LiDAR data as LAS or 
ASCII files. The LAS dataset toolbar enables users to display, thin, edit, 
and analyze LiDAR point clouds in ArcMap 10.1. Help using this toolbar is 
available at 
http://resources.arcgis.com/en/help/main/10.1/index.html#//015w0000003z000000. The 
ArcGIS 3-D analyst is another software extension that enables the user to 
create LiDAR products, such as DEMs or contour lines, from point-cloud 
data and to display, measure, and analyze those products in two dimen-
sions. Common applications include creating intensity images or contour 
lines and estimating surface slope, canopy cover, or height. Figures 4a and 
6a were made using ArcMap 10.0. More information regarding working 
with LiDAR data in ArcMap 10.1 is located at 
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/ Assessing_lidar_coverage_and 
_sample_density/00q8000000nm000000/.   

Although ArcMap 10.1 is an extremely powerful analysis tool, training is 
required to use it effectively. USACE offers week-long GIS training courses 
in ArcMap at the beginner and intermediate levels. A class in Remote 
Sensing Fundamentals, which covers obtaining, modeling, and analyzing 
multispectral, hyperspectral, radar, LiDAR, and digital elevation data, is 
also available. For more information, go to http://ulc.usace.army.mil/CrsSchedule.aspx 
and click on the letter “G” for ArcMap 10.1 courses (GIS Introduction and 
GIS Intermediate) or the letter “R” for Remote Sensing.  

http://resources.arcgis.com/en/help/main/10.1/index.html#//015w0000003z000000
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/ Assessing_lidar_coverage_and_sample_density/00q8000000nm000000/
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/ Assessing_lidar_coverage_and_sample_density/00q8000000nm000000/
http://ulc.usace.army.mil/CrsSchedule.aspx
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A free 60-day trial of ArcMap 10.1 is available at 
http://www.esri.com/software/arcgis/arcgis-for-desktop/free-trial. Support for trial software 
is found at http://www.esri.com/apps/products/arcgis/eval10/evalhelp/index.cfm. 

ArcGIS Explorer Desktop  

ArcGIS Explorer Desktop is a GIS viewer that provides a less technical 
alternative to ArcMap 10.1. The program is a free download that is easy to 
use and requires no background in GIS. ArcGIS Explorer provides access 
to ready-to-use ArcGIS basemaps and layers online, including World 
Streets, World Imagery, and World Topographic Maps. Users “fly” to dif-
ferent locations by double clicking on a layer. LiDAR-derived products can 
be imported into ArcGIS Explorer in KML format, in compressed KMZ 
format, or as a GPX file. Other types of remotely sensed data in vector 
(NWI polygons) or raster (aerial imagery) representations can be added to 
these base layers and displayed in two or three dimensions. ArcGIS Ex-
plorer enables the user to view, model, and perform spatial analyses. This 
program is available at http://www.esri.com/software/arcgis/explorer. Help and sup-
port are available at the ArcGIS Online Resource Center: 
http://resources.arcgis.com/en/communities/arcgis-explorer-desktop/. 

Global Mapper 13/dlgv(32) Global Mapper 13.2 

Global Mapper Software LLC designs, develops, and distributes the Global 
Mapper software package. Global Mapper imports LiDAR-derived models 
in raster and vector representations and imports point clouds as LAS or 
KML files. The program prompts the user to supply any missing infor-
mation, such as spatial projection. The software can be used to view, 
measure, and analyze spatial data. Global Mapper connects to the Internet 
and retrieves background maps, such as aerial imagery, street maps, or 
topographic maps, such as 10 m resolution DEMs from NED. However, 
some of these data, such as 1.0 m resolution aerial imagery from the Na-
tional Agriculture Imagery Program, cannot be accessed with the free 
download version. The 10.0 m resolution NLCD shown in Figure 6c was 
created using Global Mapper 13. The free trial of version 13.2 is available 
at http://www.bluemarblegeo.com/global-mapper/index.php. This software is also distrib-
uted by the USGS under the name dlgv32 Pro at 
ftp://ftpext.usgs.gov/pub/cr/mo/rolla/viewers/dlgv32pro/. 

http://www.esri.com/software/arcgis/arcgis-for-desktop/free-trial
http://www.esri.com/apps/products/arcgis/eval10/evalhelp/index.cfm
http://www.esri.com/software/arcgis/explorer
http://resources.arcgis.com/en/communities/arcgis-explorer-desktop/
http://www.bluemarblegeo.com/global-mapper/index.php
ftp://ftpext.usgs.gov/pub/cr/mo/rolla/viewers/dlgv32pro/
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Google Earth Pro  

Google Earth Pro (GEP) software enables users to view satellite imagery of 
locations anywhere on Earth by typing an address into a search box or 
navigating with a mouse (Terra Metrics 2012). The program is easy to use 
and requires no background in GIS. Users can quickly navigate through 
the landscape using a mouse and cursor, or they can “fly” to a location by 
double clicking on an imported layer. The elevation and the geographic 
coordinates of each location are displayed at the bottom of the screen. 
LiDAR-derived products must be converted into KML format before they 
can be imported into GEP. The program also accepts compressed KMZ 
files. Imported LiDAR products are displayed over the satellite imagery 
base map. GEP includes several base layers that may be useful to investi-
gators, including boundaries, roads, and terrain (a layer that enables the 
viewer to see the terrain in 3D). Other remotely sensed data, such as NWI 
or soil polygons, can be clipped and imported for analysis with LiDAR-
derived elevation data. Markers can be placed at various points in a project 
area. Maps are easily exported, printed, and emailed. Figure 6b was creat-
ed using GEP. 

Quick Terrain Reader 8.0.2 

Quick Terrain software was developed at Johns Hopkins University’s Ap-
plied Physics Lab and is distributed by Applied Imagery, Silver Spring, 
MD. Quick Terrain Reader (QTR 8.0.2) is the free companion software to 
Quick Terrain Modeler, a more complex program for editing and modeling 
LiDAR data and creating two dimensional products. No expertise in GIS is 
required to operate QTR 8.0.2. This program enables the user to open and 
view extremely large point clouds or models (LAS files) without having set 
projections or geographic coordinates. This program can handle models 
composed of up to 200 million points and point-cloud data composed of 
up to 100 million points. Users navigate through the landscape using a 
mouse and cursor. QTR 8.0.2 displays data in three dimensions, so care 
must be taken to ensure that the user remains on top of the landscape. The 
software includes tools for measuring length and height. Markers can be 
placed at various points in the landscape. Figures 2, 3, 4b, and 5 were 
generated using QTR 7.1.6. The program can be downloaded for free, along 
with sample LiDAR datasets to explore, at 
http://www.appliedimagery.com/download.php. 

http://www.appliedimagery.com/download.php
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Appendix B: Some Sources of LiDAR Data  

Data.gov 

The purpose of Data.gov is to increase public access to high-value, ma-
chine-readable datasets and to enable the public to find, download, and 
use these datasets, which are generated by the executive branch of the 
federal government. Data.gov provides descriptions of the federal datasets 
(metadata), information about how to access the datasets, and tools that 
leverage government datasets. The data catalogs will continue to grow as 
datasets are added. Executive branch data are included in the first version 
of Data.gov. 

There are many types of data available from this site, much of which are 
not geospatial, such as a list of FDIC failed banks. The fastest way to find 
LiDAR-derived products is to navigate to the datasets page at 
http://catalog.data.gov/dataset and to type “LiDAR” into the search box.  

Louisiana Statewide GIS  

This website (http://atlas.lsu.edu/lidar/) is maintained and operated by the Com-
puter Aided Design and Geographic Information Systems Research Labor-
atory at Louisiana State University. A wide variety of geospatial data are 
available, including LiDAR data. Data can be downloaded as shapefiles 
with contour lines, as DEMs, and as raw or edited point clouds.  

National Center for Airborne Laser Mapping 

The National Center for Airborne Laser Mapping (NCALM) Distribution 
Center website (http://calm.geo.berkeley.edu/ncalm/ddc.html) is hosted and main-
tained at the University of California-Berkeley, Department of Earth and 
Planetary Science, with IT infrastructure support from the Berkeley Seis-
mological Laboratory. It is jointly operated by the Department of Civil and 
Environmental Engineering, Cullen College of Engineering, University of 
Houston, and the Department of Earth and Planetary Science, University 
of California-Berkeley. The National Science Foundation provides funding 
for this website, which makes aerial laser mapping technology (i.e., 
LiDAR) available to the scientific community. The datasets were collected 
under NCALM’s graduate student seed proposal program. Each collection 

http://geo.data.gov/geoportal/catalog/search/search.page
http://geo.data.gov/geoportal/catalog/search/search.page
http://atlas.lsu.edu/lidar/
http://calm.geo.berkeley.edu/ncalm/ddc.html
http://eps.berkeley.edu/
http://eps.berkeley.edu/
http://seismo.berkeley.edu/
http://seismo.berkeley.edu/
http://www.ncalm.cive.uh.edu/seed/proposal.html
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is typically limited to an area of no more than 40 km2. Figure 3b was made 
from data collected by NCALM. 

National Center for Earth-Surface Dynamics 

These stream restoration data were created or compiled by scientists fund-
ed by the National Center for Earth-Surface Dynamics (NCED). Registered 
users may access and download data at https://repository.nced.umn.edu. Not all 
data are LiDAR-derived. NCED requests that all data obtained from this 
site be properly cited, including any additional citation accompanying a 
specific data set.  

Natural Resources Conservation Service 

Data from the National Elevation Dataset can be downloaded at Geospatial 
Data Gateway (http://datagateway.nrcs.usda.gov/) maintained by the US Depart-
ment of Agriculture, NRCS. To order, select the state and county of your 
project area. If LiDAR data are available, they will be listed under the 
elevation data category as “3 Meter.” 

North Carolina Floodplain Mapping Program 

LiDAR data, aerial imagery, and floodplain maps for every county in North 
Carolina are accessible through a clickable map (http://www.ncfloodmaps.com/). 
Data can be downloaded or users can create maps online and download 
them as PDFs.  

OpenTopography Facility 

The OpenTopography Facility is based at the San Diego Supercomputer 
Center at the University of California, San Diego, and is operated in col-
laboration with colleagues in the School of Earth and Space Exploration at 
Arizona State University. Core operational support for OpenTopography 
comes from the National Science Foundation’s Earth Sciences: Instrumen-
tation and Facilities Program and the Office of Cyberinfrastructure. 
OpenTopography also receives funding from the National Science Founda-
tion and NASA to support research and development activities. 

OpenTopography supplies LiDAR data in a variety of manageable formats. 
The site (http://www.opentopography.org/) features a clickable map that shows 
locations across the country where LiDAR data are available. LiDAR data 
and products collected by ALS and TLS can downloaded in many formats, 

https://repository.nced.umn.edu/
http://datagateway.nrcs.usda.gov/
http://www.ncfloodmaps.com/
http://www.opentopography.org/
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including as point clouds (LAS or LAZ), as two-dimensional DEMs in 
raster format (GeoTIFF, IMG, Arc ASCII Grid), or as Google Earth files 
(KMZ). After selecting a geographic area, the user is guided through down-
loading a point cloud or selecting a subset of the data (i.e., last or first 
returns) to create a custom DTM, DSM, DEM, or TIN. Figure 3b was made 
from a DEM obtained at this site. 

Puget Sound LIDAR Consortium 

The Puget Sound LiDAR Consortium is an informal group of local agency 
staff and federal research scientists devoted to developing public-domain 
high-resolution LiDAR topography and derivative products for the Puget 
Sound region. Participants include Kitsap PUD; Kitsap, Clallam, and Is-
land counties; the City of Seattle; Puget Sound Regional Council; NASA; 
and the USGS. Registered users may download LAS or ASCII files, DEMs 
in raster representations, georeferenced topographic images, and other 
data at http://www.pugetsoundlidar.org. 

United States Interagency Elevation Inventory 

The US Interagency Elevation Inventory provides high-accuracy topo-
graphic and bathymetric data for the United States and its territories. The 
project is a joint effort between NOAA and USGS with contributions from 
FEMA. A clickable map shows the location and types of LiDAR data avail-
able, including but not limited to topographic LiDAR, topobathy shoreline 
LiDAR, and bathymetric LiDAR. The address is 
http://www.csc.noaa.gov/inventory/#. 

USACE National Coastal Mapping Program 

The USACE National Coastal Mapping Program is designed to provide 
high-resolution elevation and imagery data along US shorelines on a re-
curring basis. The NCMP is executed by the Joint Aerial Lidar Bathymetry 
Technical Center of Expertise (JALBTCX). Aerial LiDAR and imagery data 
are available for many locations in Washington, Oregon, California, on the 
Gulf and Atlantic Coasts, on the shores of the Great Lakes and on connect-
ing rivers and streams. GIS and LiDAR-derived products include seamless 
bathy/topo grids, bare earth bathy/topo grids, building footprints, a shore-
line vector, seafloor reflectance images, basic land cover classifications, 
and RGB and hyperspectral image mosaics. These data can be accessed by 

http://www.pugetsoundlidar.org/
http://www.csc.noaa.gov/inventory/
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going to http://catalog.data.gov/dataset and typing “JALBTCX + LiDAR” into the 
search box. 

USGS CLICK 

The goal of the USGS Center for LiDAR Information Coordination and 
Knowledge (CLICK) (http://lidar.cr.usgs.gov/index.php) is to facilitate data access, 
user coordination, and education of LiDAR remote sensing for scientific 
needs. 

The LiDAR data viewer (http://earthexplorer.usgs.gov/) shows areas of the US for 
which LiDAR data are available. Check the box marked “LiDAR” under the 
tab marked “Data Sets.” Select a state from the drop-down box under the 
tab marked “Additional Criteria.” Then click the “Results” tab. 

USGS-NPS-NASA EAARL 

LiDAR data acquired by the USGS-NPS-NASA using NASA’s Experimental 
Airborne Advanced Research LiDAR (EAARL) system in a variety of 
coastal environments are available at 
http://ngom.usgs.gov/dsp/data/products_year.php. This project is a collaboration 
among the USGS Coastal and Marine Geology Program’s Integrated Re-
mote Sensing and Modeling Group, NASA’s Wallops Flight Facility, and 
the National Park Service’s (NPS) Inventory and Monitoring Program. 
Figures 5a and 5b were made from data downloaded from this site. 

USGS National Map Seamless Server 

Both LiDAR-derived and non-LiDAR-derived elevation data are available 
for download on the Seamless Server Data Warehouse at 
http://nationalmap.gov/viewer.html. Click the box marked “Elevation Availability.” 
To see LiDAR coverage areas, click the box marked NED 1/9 ~ 3 meter - 
Staged to see locations where LiDAR data are available. These data can be 
extracted from the National Map Seamless Server by highlighting an area 
of interest and clicking the download button at 
http://viewer.nationalmap.gov/viewer/. 

Wikipedia 

Wikipedia lists a number of LiDAR data sets by state and county and pro-
vides links to the data. These tables were created from an American Socie-
ty for Photogrammetry and Remote Sensing publication and from NOAA’s 

http://catalog.data.gov/dataset
http://www.data.gov/search/node/JALBTCX%20%2B%20Lidar
http://lidar.cr.usgs.gov/index.php
http://earthexplorer.usgs.gov/
http://ngom.usgs.gov/dsp/data/products_year.php
http://marine.usgs.gov/
http://coastal.er.usgs.gov/remote-sensing/
http://coastal.er.usgs.gov/remote-sensing/
http://nationalmap.gov/viewer.html
http://viewer.nationalmap.gov/viewer/


ERDC/CRREL TR-14-3 61 

 

Topographic and Bathymetric Data Inventory and are found at 
http://en.wikipedia.org/wiki/National_Lidar_Dataset_(United_States). 

http://en.wikipedia.org/wiki/National_Lidar_Dataset_(United_States)
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